NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Metamorphism of Cosmic Dust: Processing from Circumstellar Outflows to the Cometary RegolithNucleation is a non-equilibrium process: the products of this process are seldom the most thermodynamically stable condensates but are instead those which form fastest. It should therefore not be surprising that grains formed in a circumstellar outflow will undergo some degree of metamorphism if they are annealed or are exposed to a chemically active reagent. Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Various workers have shown that refractory mantles could form on refractory cores by radiation processing of organic ices. A similar process may operate to produce refractory inorganic mantles on grain cores which survived the supernova shocks. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which we hope to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. Some discussion of the physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be attempted based on the limited laboratory data available to date. Suggestions will be made concerning the types of experimental data which are needed in order to better understand the processing history of cosmic dust.
Document ID
19980218982
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Nuth, Joseph A., III
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Date Acquired
August 18, 2013
Publication Date
December 1, 1997
Publication Information
Publication: Analysis of Returned Comet Nucleus Samples
Subject Category
Astrophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available