NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Global tropospheric ozone investigationsOzone (O3) is one of the most important trace gases in the troposphere, and it is responsible for influencing many critical chemical and radiative processes. Ozone contributes to the formation of the hydroxyl radical (OH), which is central to most chemical reactions in the lower atmosphere, and it absorbs UV, visible, and infrared radiation which affects the energy budget and atmospheric temperatures. In addition, O3 can be used as a tracer of atmospheric pollution and stratosphere troposphere exchange. At elevated concentrations, O3 can also produce detrimental biological and human health effects. The US National Research Council (NRC) Board on Sustainable Development reviewed the US Global Change Research Program (USGCRP) [NRC, 1995], and it identified tropospheric chemistry as one of the high priority areas for the USGCRP in the next decade. The NRC identified the following specific challenges in tropospheric chemistry. Although we understand the reason for the high levels of 03 over several regions of the world, we need to better establish the distribution of O3 in the troposphere in order to document and understand the changes in the abundance of global tropospheric O3. This information is needed to quantify the contribution of O3 to the Earth' s radiative balance and to understand potential impacts on the health of the biosphere. Having recognized the importance of particles in the chemistry of the stratosphere, we must determine how aerosols and clouds affect the chemical processes in the troposphere. This understanding is essential to predict the chemical composition of the atmosphere and to assess the resulting forcing effects in the climate system. We must determine if the self-cleansing chemistry of the atmosphere is changing as a result of human activities. This information is required to predict the rate at which pollutants are removed from the atmosphere. Over nearly two decades, airborne Differential Absorption Lidar (DIAL) systems have been used in over fifteen major field experiments conducted all over the world to address important atmospheric processes affecting the amount and distribution of 03 and aerosols across the troposphere. This paper discusses some of these wide-ranging field experiments and their results and presents a direction for future global studies of O3 and aerosols from space.
Document ID
19980227636
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Browell, Edward V.
(NASA Langley Research Center Hampton, VA United States)
Date Acquired
August 18, 2013
Publication Date
July 1, 1998
Publication Information
Publication: Nineteenth International Laser Radar Conference
Subject Category
Environment Pollution
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available