NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Comparative Soot Diagnostics: 1 Year ReportThe motivation for the Comparative Soot Diagnostics (CSD) experiment lies in the broad practical importance of understanding combustion generated particulate. Depending upon the circumstances, particulate matter can affect the durability and performance of combustion equipment, can be a pollutant, can be used to detect fires and, in the form of soot, can be the dominant source of radiant energy from flames. Bright sooty fires are desirable for efficient energy extraction in furnaces and power equipment. In contrast, soot-enhanced radiation is undesirable in many propulsion systems (e.g. jet engines). The non-buoyant structure of most flames of practical interest (turbulent) makes understanding of soot processes in low gravity flames important to our ability to predict fire behavior on earth. These studies also have direct applications to fire safety in human-crew spacecraft, since smoke is the indicator used for automated detection in current spacecraft. In addition, recent tests conducted on MIR showed that a candle in a truly quiescent spacecraft environment can burn for tens of minutes. Consequently, this test and many earlier tests have demonstrated that fires in spacecraft can be considered a credible risk. In anticipation of this risk, NASA has included fire detectors on Skylab, smoke detectors on the Space Shuttle (STS), and smoke detectors in the design for the International Space Station (ISS). In the CSD experiment, these smoke detectors were tested using, quasi-steady, low-gravity, particulate generating materials. Samples of the particulate were also obtained from these low-gravity sources. This experiment provides the first such measurements aimed toward understanding of soot processes here on earth and for the testing and design of advanced spacecraft smoke detection systems. This paper describes the operation and preliminary results of the CSD experiment which was was conducted in the Middeck Glovebox Facility (MGBX) on USMP-3. The objectives of CSD are to examine the particulate emission from a variety of pyrolyzing and combusting sources and to quantify the performance of several particulate-sensing diagnostic techniques. This paper presents the results of the microgravity portion of the CSD experiment. The results include the temporal response of the detectors and average sizes of the primary and aggregate particles captured on the thermophoretic probes. Complete assessment of the microgravity data and its combination with the normal-gravity data are still in process.
Document ID
19990020833
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Urban, David L.
(NASA Lewis Research Center Cleveland, OH United States)
Griffin, DeVon W.
(NASA Lewis Research Center Cleveland, OH United States)
Gard, Melissa Y.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Date Acquired
August 19, 2013
Publication Date
November 1, 1998
Publication Information
Publication: Third United States Microgravity Payload: One Year Report
Subject Category
Inorganic And Physical Chemistry
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available