NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
An Integrated Tool for the Coupled Thermal and Mechanical Analysis of Pyrolyzing Heatshield MaterialsMaterials that pyrolyze at elevated temperature have been commonly used as thermal protection materials in hypersonic flight, and advanced pyrolyzing materials for this purpose continue to be developed. Because of the large temperature gradients that can arise in thermal protection materials, significant thermal stresses can develop. Advanced applications of pyrolytic materials are calling for more complex heatshield configurations, making accurate thermal stress analysis more important, and more challenging. For non-pyrolyzing materials, many finite element codes are available and capable of performing coupled thermal-mechanical analyses. These codes do not, however, have a built-in capability to perform analyses that include pyrolysis effects. When a pyrolyzing material is heated, one or more components of the original virgin material pyrolyze and create a gas. This gas flows away from the pyrolysis zone to the surface, resulting in a reduction in surface heating. A porous residue, referred to as char, remains in place of the virgin material. While the processes involved can be complex, it has been found that a simple physical model in which virgin material reacts to form char and pyrolysis gas, will yield satisfactory analytical results. Specifically, the effects that must be modeled include: (1) Variation of thermal properties (density, specific heat, thermal conductivity) as the material composition changes; (2) Energy released or absorbed by the pyrolysis reactions; (3) Energy convected by the flow of pyrolysis gas from the interior to the surface; (4) The reduction in surface heating due to surface blowing; and (5) Chemical and mass diffusion effects at the surface between the pyrolysis gas and edge gas Computational tools for the one-dimensional thermal analysis these materials exist and have proven to be reliable design tools. The objective of the present work is to extend the analysis capabilities of pyrolyzing materials to axisymmetric configurations, and to couple thermal and mechanical analyses so that thermal stresses may be efficiently and accurately calculated.
Document ID
19990021045
Acquisition Source
Armstrong Flight Research Center
Document Type
Other
Authors
Pronchick, Stephen W.
(California Maritime Academy Vallejo, CA United States)
Date Acquired
August 19, 2013
Publication Date
October 1, 1998
Subject Category
Nonmetallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available