NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Investigation of Diffusion Flame Tip Thermodiffusive and Hydrodynamic Instability under Microgravity ConditionsWe employ the opposed flow flame-spread configuration in order to examine flame-front instability of diffusion flames near cold, solid boundaries. The thermo-diffusive and hydrodynamic instabilities can transform an initially planar flame front into an irregularly curved, corrugated, possibly fragmented front. Under ordinary 1-g conditions, the buoyancy-induced flow masks the thermo-diffusive and hydrodynamic instabilities and produces planar flames. Such stable spreading flames have been observed for decades in laboratory experiments. Experiments in zero gravity are necessary to produce unstable flame fronts. The thermo-diffusive/hydrodynamic microgravity instability appears in diffusion flames such as, for example: the candle flame oscillations observed by Dietrich et al.; smolder instabilities on a recent Space Shuttle flight. Drs. T. Kashiwagi and S. Olson have attributed the latter to a lowered oxygen transport rate to the hot, reactive surface. Consider a burning surface near the flame extinction limit. The flow, or stretch, induced by the diffusion flame is weak, hence buoyancy plays a small role, thereby enabling previously secondary mechanisms, such as differential thermo-diffusion, to become the most important mechanisms. The flame leading edge becomes unstable; and diffusion flame breakup, oscillation, and rejoining all occur at a measurable frequency of approximately O(1 Hz). This project has only begun in January of this year, 1999. To date, there have been no flight experiments on flame spread instabilities. However, we have made numerous experiments in the NASA 2.2 and 5 second drop towers on flame spread over very thin cellulosic fuels. We have been very fortunate through a combination of factors, to be explained, to obtain some interesting, perhaps even compelling, results on diffusion flame instability in the presence of heat losses to cold surfaces.
Document ID
19990054003
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Wichman, I. S.
(Michigan State Univ. East Lansing, MI United States)
Olson, S. L.
(NASA Glenn Research Center Cleveland, OH United States)
Date Acquired
August 19, 2013
Publication Date
May 1, 1999
Publication Information
Publication: Fifth International Microgravity Combustion Workshop
Subject Category
Materials Processing
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available