NTRS - NASA Technical Reports Server

Back to Results
Effect of Altered Gravity Environment on Tobacco Hornworm (Manduca Sexta) DevelopmentMetamorphosis provides a unique condition for studying the role of gravity in development. Formation of new organs in a previously existing organism requires a highly active period of turnover of amino acids and proteins, and of changes in the endocrine profile. Furthermore, metamorphosis offers the advantage of studying a self-contained biological system. The tobacco hornworm provides a suitable species to study the effect of altered gravitational environment on invertebrate development. This species has been one of the most thoroughly investigated organisms in a variety of aspects of insect biology. M. sexta pharate adults can provide significant amounts of material with which to work, thus facilitating the study of metabolic aspects of adult development. During wandering, the period immediately following cessation of larval feeding, the larva burrows into the soil to form a pupation chamber. Despite burrowing down 25 to 30 cm, the insects reorient themselves to a slightly head-up (10 +/- 1 degree) position. Since light and temperature are not factors in this process, the larvae must sense the gravity vector. In our ground-based studies we had assessed whether developing adults might be sensitive to their gravitational environment by orienting pupae in a vertical head-up position within 24 to 48 h after pupal ecdysis. Our ground-based findings formed the foundation for determining which parameters would be evaluated in developing Manduca following spaceflight. Measurements were to include: (1) extent of development by all of the insects, (2) analysis of hemolymph obtained from half of the insects postflight for ecdysteroid, amino acid, urea, ammonia and trehalose concentrations, (3) further development of the other half of the insects to adult (moths), (4) analysis of the flight muscle protein content of the adults. Based on the first flight attempt in July, 1995, we modified the BRIC hardware to accommodate the insects. Our studies after BRIC-04 showed that sealing the top and bottom lids of the canisters with an 0-ring and with vacuum grease caused the insects to stop developing because of accumulation of carbon dioxide. Even though removing both the O-rings and vacuum grease permitted normal development, there was still some increase in carbon dioxide levels. Consequently, the canisters were vented and the vents covered with gas permeable membrane.
Document ID
Acquisition Source
Kennedy Space Center
Document Type
Tischler, Marc E.
(Arizona Univ. Tucson, AZ United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1996
Subject Category
Life Sciences (General)
Report/Patent Number
Funding Number(s)
Distribution Limits
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available