NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Realistic NLTE Radiative Transfer for Modeling Stellar WindsThis NASA grant supported the development of codes to solve the non-LTE multi-level spherical radiative transfer problem in the presence of velocity fields. Much of this work was done in collaboration with Graham Harper (CASA, University of Colorado). These codes were developed for application to the cool, low-velocity winds of evolved late-type stars. Particular emphasis was placed on modeling the wind of lambda Velorum (K4 lb), the brightest K supergiant in the sky, based on extensive observations of the ultraviolet spectrum with the HST/GHRS from GO program 5307. Several solution techniques were examined, including the Eddington factor Approach described in detail by Bennett & Harper (1997). An Eddington factor variant of Harper's S-MULTI code (Harper 1994) for stationary atmospheres was developed and implemented, although full convergence was not realized. The ratio of wind terminal velocity to turbulent velocity is large (approx. 0.3-0.5) in these cool star winds so this assumption of stationarity provides reasonable starting models. Final models, incorporating specified wind laws, were converged using the comoving CRD S-MULTI code. Details of the solution procedure were published by Bennett & Harper (1997). Our analysis of the wind of lambda Vel, based on wind absorption superimposed on chromospheric emission lines in the ultraviolet, can be found in Carpenter et al. (1999). In this paper, we compare observed wind absorption features to an exact CRD calculation in the comoving frame, and also to a much quicker, but approximate, method using the SEI (Sobolev with Exact Integration) code of Lamers, Cerruti-Sola, & Perinotto (1987). Carpenter et al. (1999) provide detailed comparisons of the exact CRD and approximate SEI results and discuss when SEI is adequate to use for computing wind line profiles. Unfortunately, the observational material is insufficient to unambiguously determine the wind acceleration law for lambda Vel. Relatively few unblended Fe II lines of optical depth sensitive to the wind acceleration region are present in the existing HST/GHRS data set. Most of the Fe II lines are either too optically thick (resulting in a board, black wind absorption profile) or too optically thin (resulting in no wind absorption feature present). Also, most of the ultraviolet spectra obtained from HST GO-5307 was at medium resolution (R approx. 40,000, corresponding to a velocity resolution of 7.5 km/s). This is simply inadequate to resolve the turbulence in the outer wind; a key parameter in theoretical wind models. We can now say that an unambiguous determination of the wind velocity law in lambda Vel will require complete coverage of the ultraviolet spectrum at high dispersion (R approx. 10(exp 5), or 3 km/s). This is now feasible usin, the STIS echelle spectrograph on-board HST.
Document ID
19990114270
Acquisition Source
Goddard Space Flight Center
Document Type
Contractor or Grantee Report
Authors
Bennett, Philip D.
(Colorado Univ. Boulder, CO United States)
Date Acquired
August 19, 2013
Publication Date
June 6, 1999
Subject Category
Astrophysics
Funding Number(s)
CONTRACT_GRANT: NAG5-3033
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available