NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Clustering of the Diffuse Infrared Light from the COBE DIRBE MapsThe cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. The spatial fluctuations of the CIB resulting from galaxy clustering are expected to be at least a few percent on scales of a degree, depending on the luminosity and clustering history of the early universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 microns we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (absolute value of b > 20 deg) and away from the center (90 deg < l < 270 deg) we extrapolate the amplitude of the fluctuations to cosec absolute value of b = 0. We find a positive intercept of delta.F(sub rms) = 15.5(sup +3.7, sub -7.0), 5.9(sup +1.6, sub -3.7), 2.4(sup +0.5, sub -0.9), 2.0(sup +0.25, sub -0.5) nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.6(sup +1.2, sub -2.4) nW/sq m.sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. We also obtain a positive intercept from a linear combination of maps at 1.25 and 2.2 microns. For 2 deg < theta < 15 deg, a power-spectrum analysis yields limits of (theta/5 deg) x delta.F(sub rms)(theta) < 6, 2.5, 0.8, 0.5 nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively. From 10 - 100 microns, the dominant foregrounds are emission by dust in the Solar system and the Galaxy. There the upper limits on the CIB fluctuations are below 1 nW/sq m.sr and are lowest (< equal 0.5 nW/sq m.sr) at 25 microns.
Document ID
20000004368
Acquisition Source
Goddard Space Flight Center
Document Type
Other
Authors
Kashlinsky, A.
(NORDITA Copenhagen Denmark)
Mather, J. C.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Odenwald, S.
(Raytheon STX Corp. Greenbelt, MD United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Subject Category
Optics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available