NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Exploring Mars: the Ares Payload Service (APS)In last year's Mars Society convention we introduced the results of five years of studies of space launch capability for the second millennium. We concluded that Single Stage to Orbit (SSTO) vehicles such as the Delta Clipper X33, and X34 cannot make it to orbit from the Earth's surface. Whether taking off vertically or horizontally or landing vertically or horizontally, the rocket equations, the performance of available fuels, and the realities of the weight and strength of materials leave no margin for payload. The promised savings from SSTO systems are illusory. However, a configuration that is able to deliver useful payload to orbit is the Single step to Orbit, SsTO, a rocket plane that is released fully fueled, from 35,000 to 40,000 feet altitude. Three approaches have been proposed. The Hot'l and Molnya Corporation designs carry the fueled rocket plane to altitude on the back of a carrier aircraft. In this design the carrier aircraft is Russia's Antonov 225 the world's largest cargo plane. The rocket plane is a modified version of the Buran, Russia's own space shuttle. Another configuration is Kelly Aviation's concept in which the fully fueled rocket plane is towed to altitude by the cargo plane and then released. A third approach is based on the early "X" planes, which were dropped from the belly of the carrier plane. While the rocket equations indicate that these three concepts can deliver useful payloads, the Stanford review found significant advantages to the approach of Pioneer Rocket, in which the rocket plane flies up to the carrier plane with conventional jet engines, docks, and then loads on the oxidizer for the flight to orbit. This architecture has more reasonable abort modes in case of system failure in either aircraft and can deliver a larger final payload to orbit for a given sized carrier. The Stanford recommendation is that the carrier aircraft be the Antonov 225. A design based on this was presented in a report last year. Refinements to the design notably an improved re-entry cooling system and fueling stability analysis were done this year. More technical detail and a proposed international consortium to develop the SSTO is presented in another session of this year's Mars convention. We believe that there will be no human exploration of Mars based on the Shuttle or Expendable launch vehicles, and no resources available except for a cooperative international program. However, just as the world is learning to cooperate in peacekeeping, we hold out the hope that similar cooperation will develop for Mars exploration. With that in mind, this year we asked the question- "How will the human mission get to Mars if it has to use the SsTO for transportation?"
Document ID
20000005096
Document Type
Other - Collected Works
Authors
Bowen, Justin (Stanford Univ. Stanford, CA United States)
Lusignan, Bruce (Stanford Univ. Stanford, CA United States)
Date Acquired
August 19, 2013
Publication Date
August 19, 1999
Subject Category
Lunar and Planetary Science and Exploration
Funding Number(s)
CONTRACT_GRANT: NCC2-5256
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry