NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experiment Evaluation of Bifurcation in SandsThe basic principles of bifurcation analysis have been established by several investigators, however several issues remain unresolved, specifically how do stress level, grain size distribution, and boundary conditions affect general bifurcation phenomena in pressure sensitive and dilatant materials. General geometrical and kinematics conditions for moving surfaces of discontinuity was derived and applied to problems of instability of solids. In 1962, the theoretical framework of bifurcation by studying the acceleration waves in elasto-plastic (J2) solids were presented. Bifurcation analysis for more specific forms of constitutive behavior was examined by studying localization in pressure-sensitive, dilatant materials, however, analyses were restricted to plane deformation states only. Bifurcation analyses were presented and applied to predict shear band formations in sand under plane strain condition. The properties of discontinuous bifurcation solutions for elastic-plastic solids under axisymmetric and plane strain loading conditions were studied. The study focused on theory, but also references and comparisons to experiments were made. The current paper includes a presentation of a summary of bifurcation analyses for biaxial and triaxial (axisymmetric) loading conditions. The Coulomb model is implemented using incremental piecewise scheme to predict the constitutive relations and shear band inclination angles. Then, a comprehensive evaluation of bifurcation phenomena is presented based on data from triaxial experiments performed under microgravity conditions aboard the Space Shuttle under very low effective confining pressure (0.05 to 1.30 kPa), in which very high peak friction angles (47 to 75 degrees) and dilatancy angles (30 to 31 degrees) were measured. The evaluation will be extended to include biaxial experiments performed on the same material under low (10 kPa) and moderate (100 kPa) confining pressures. A comparison between the behavior under biaxial and triaxial loading conditions will be presented, and related issues concerning influence of confining pressure will be discussed.
Document ID
20000014309
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Alshibi, Khalid A.
(Alabama Univ. Huntsville, AL United States)
Sture, Stein
(Colorado Univ. Boulder, CO United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Geophysics
Meeting Information
Meeting: Plasticity
Location: British Columbia
Country: Canada
Start Date: July 18, 2000
Funding Number(s)
CONTRACT_GRANT: NCC8-66
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available