NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Origin and Reactivity of the Martian Soil: A 2003 MicromissionThe role of water in the development of the martian surface remains a fundamental scientific question. Did Mars have one or more "warm and wet" climatic episodes where liquid water was stable at the surface? If so, the mineral phases present in the soils should be consistent with a history of aqueous weathering. More generally, the formation of hydrated mineral phases on Mars is a strong indicator of past habitable surface environments. The primary purpose of this investigation is to help resolve the question of whether such aqueous indicators are present on Mars by probing the upper meter for diagnostic mineral species. According to Burns [1993], the formation of the ferric oxides responsible for the visible color of Mars are the result of dissolution of Fe (+2) phases from basalts followed by aqueous oxidation and precipitation of Fe" mineral assemblages. These precipitates likely included iron oxyhydroxides such as goethite (a-FeOOH) and lepidocrocite (g-FeOOH), but convincing evidence for these phases at the surface is still absent. The stability of these minerals is enhanced beneath the surface, and thus we propose a subsurface search for hydroxylated iron species as a test for a large-scale chemical weathering process based on interactions with liquid water. It is also possible that the ferric minerals on Mars are not aqueous alteration products of the rocks. A chemical study of the Pathfinder landing site concluded that the soils are not directly derived from the surrounding rocks and are enhanced in Mg and Fe. The additional source of these elements might be from other regions of Mars and transported by winds, or alternatively, from exogenic sources. Gibson [1970] proposed that the spectral reflectivity of Mars is consistent with oxidized meteoritic material. Yen and Murray [1998] further extend Gibson's idea and show, in the laboratory, that metallic iron can be readily oxidized to maghemite and hematite under present-day martian surface conditions (in the absence of liquid water). A test for a meteoritic component of the soil can be conducted, as described below, by searching for the presence of Ni at the martian surface. The average abundance of nickel in an Fe-Ni meteorite is about 7% and, if present at measurable levels in the soil, would be indicative of an exogenic contribution. In addition, it may be possible to directly search for mineral phases common in meteorites. An understanding of the formation and evolution of the martian soil would not be complete without addressing the unusual reactivity discovered by the Viking Landers The presence of an inorganic oxidant, possibly one produced as a results of photochemical processes, is the most widely accepted explanation of the Viking results. Are these chemical species simply adsorbed on soil grains, or have they reacted with the metal oxide substrates and altered the mineral structures? Could a completely different (non-photochemical) process be responsible for the soil reactivity? The various ideas for the nature of this putative oxidant could be constrained by a measurement of the change in reactivity with depth. Different compositions will have different lifetimes and mobilities and thus will have different vertical profiles. Because the oxidizing compounds are believed to actively destroy organic molecules, determination of the reactivity gradient also has significant implications for the search for life on Mars. A DS2-based microprobe system can be instrumented for a 2003 micromission to investigate the origin and reactivity of the martian soil. These measurements would provide invaluable information regarding the climate history and exobiological potential of the planet. The NMR, X ray and chemiresistor measurement approach described embodies a highly synergistic and general set of soil interrogation methods for elements, compounds, and crystal structures and can also be applied to other geologic questions of interest. For example, if the capability for precise targeting of the probes is available, then in-situ investigations of suspected evaporite and hydrothermal deposits would be possible with the same set of instruments. Additional information is contained in the original.
Document ID
20000025370
Document Type
Conference Paper
Authors
Yen, Albert S. (Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Kim, S. Sam (Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Marshall, John (Search for Extraterrestrial Intelligence Inst. Moffett Field, CA United States)
Murray, Bruce C. (California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 19, 2013
Publication Date
September 1, 1999
Publication Information
Publication: Studies of Mineralogical and Textural Properties of Martian Soil: An Exobiological Perspective
Subject Category
Lunar and Planetary Science and Exploration
Meeting Information
Mars Exploration Programme and Sample Return Mission(Paris)
Funding Number(s)
CONTRACT_GRANT: NCC2-926
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.