NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Design Tool for Liquid Rocket Engine InjectorsA practical design tool for the analysis of flowfields near the injector face has been developed and used to analyze the Fastrac engine. The objective was to produce a computational design tool which was detailed enough to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows. To obtain a model which could be used to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe liquid and vapor sub- and super-critical flows, the model included thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. A homogeneous model was constructed such that the local state of the flow was determined directly, i.e. the quality of the flow was calculated. Such a model does not identify drops or their distribution, but it does allow the flow along the injector face and into the acoustic cavity to be predicted. It also allows the film coolant flow to be accurately described. The initial evaluation of the injector code was made by simulating cold flow from an unlike injector element and from a like-on-like overlapping fan (LOL) injector element. The predicted mass flux distributions of these injector elements compared well to cold flow test results. These are the same cold flow tests which serve as the data base for the JANNAF performance prediction codes. The flux distributions 1 inch downstream of the injector face are very similar; the differences were somewhat larger at further distances from the faceplate. Since the cold flow testing did not achieve good mass balances when integrations across the entire fan were made, the CFD simulation appears to be reasonable alternative to future cold flow testing. To simulate the Fastrac, an RP-1/LOX combustion model must be chosen. This submodel must be relatively simple to accomplish three-dimensional, multiphase flow simulations. Single RP-1 pyrolysis and partial oxidation steps were chosen and the combustion was completed with the wet CO mechanism. Soot was also formed with a single global reaction. To validate the combustion submodel, global data from gas generator tests and from subscale motor test were used to predict qualitatively correct mean molecular weights, temperature, and soot levels. Because such tests do not provide general kinetics rates, the methodology is not necessarily appropriate for other than rocket type flows conditions. Soot predictions were made so that radiation heating to the motor walls can be made. These initial studies of the Fastrac were for a small region close to the injector face and chamber wall which included a segment of the acoustic cavity. The region analyzed includes 11 individual orifice holes to represent the LOL elements and the H2 film coolant holes. Typical results of this simulation are shown in Figure 1. At this point the only available test data to verify the predictions are temperatures measured in the acoustic cavity. These temperatures are in reasonable agreement at about 2000R (1111 K). Future work is expected to include improving the computational efficiency or the CFD model and/or using more computer capacity than the single Pentium PC with which these simulations were made.
Document ID
20000027515
Acquisition Source
Marshall Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Farmer, Richard C.
(SECA, Inc. Huntsville, AL United States)
Cheng, Gary
(SECA, Inc. Huntsville, AL United States)
Trinh, Huu Phuoc
(NASA Marshall Space Flight Center Huntsville, AL United States)
Tucker, P. Kevin
(NASA Marshall Space Flight Center Huntsville, AL United States)
Hutt, John
(NASA Marshall Space Flight Center Huntsville, AL United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Subject Category
Spacecraft Propulsion And Power
Meeting Information
Meeting: Joint Propulsion
Location: Huntsville, AL
Country: United States
Start Date: July 17, 2000
End Date: July 19, 2000
Sponsors: Department of the Air Force, NASA Headquarters, Department of the Navy, Department of the Army
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available