NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Sweep and Compressibility Effects on Active Separation Control at High Reynolds NumbersThis paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick GlauertGoldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.
Document ID
20000029610
Acquisition Source
Langley Research Center
Document Type
Preprint (Draft being sent to journal)
Authors
Seifert, Avi
(National Academy of Sciences - National Research Council Hampton, VA United States)
Pack, LaTunia G.
(NASA Langley Research Center Hampton, VA United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Aerodynamics
Report/Patent Number
AIAA Paper 2000-0410
Meeting Information
Meeting: 38th Aerospace Sciences Meeting
Location: Reno, NV
Country: United States
Start Date: January 10, 2000
End Date: January 13, 2000
Sponsors: American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available