NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Coseismic Excitation of the Earth's Polar MotionApart from the "shaking" near the epicenter that is the earthquake, a seismic event creates a permanent field of dislocation in the entire Earth. This redistribution of mass changes (slightly) the Earth's inertia tensor; and the Earth's rotation will change in accordance with the conservation of angular momentum. Similar to this seismic excitation of Earth rotation variations, the same mass redistribution causes (slight) changes in the Earth's gravitational field expressible in terms of changes in the Stokes coefficients of its harmonic expansion. In this paper, we give a historical background of the subject and discuss the related physics; we then compute the geodynamic effects caused by earthquakes based on normal-mode summation scheme. The effects are computed using the centroid moment tensor (CMT) solutions for 15,814 major earthquakes from Jan., 1977, through Feb., 1999, as provided in the Harvard CMT catalog. The computational results further strengthens these findings and conclusions: (i) the strong tendency for earthquakes to make the Earth rounder and more compact (however slightly) continues; (ii) so does the trend in the seismic "nudging" of the rotation pole toward the general direction of approx. 140 E, roughly opposite to that of the observed polar drift, but two orders of magnitude smaller in drift speed.
Document ID
20000033424
Acquisition Source
Jet Propulsion Laboratory
Document Type
Preprint (Draft being sent to journal)
Authors
Chao, B. F.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Gross, R. S.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Geophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available