NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Lateral and Vertical Heterogeneity of Thorium in the Procellarum KREEP Terrane: As Reflected in the Ejecta Deposits of Post-Imbrium CratersThe Procellarum KREEP Terrane displays the highest concentrations of Th on the Moon. However, locations of elevated Th in this region appear to be random. As observed in the 5 deg per pixel equal-area Th data, and made more evident in the preliminary 2 deg data, Th is enhanced around the craters Aristillus, Aristarchus, Kepler, Mairan, the Apennine Bench formation, and the Fra Mauro region, while noticeably and unexpectedly lower in other locations (e.g., Archimedes, Copernicus, Eratosthenes, and Plato). We have examined the composition of the materials present in these regions with the goal of understanding the patchy nature to the distribution of Th and ultimately to decipher the geologic processes that have concentrated the Th. At present time, the published resolution of the Lunar Prospector Th gamma-ray data is low (5 deg per pixel), but this will soon be superceded by significantly higher-resolution data (2 deg per pixel). Even at this improved resolution, however, it is difficult to resolve the units that are the major source of Th. In an attempt to circumvent this problem, we employ the higher-resolution Clementine multispectral data for those regions mentioned above. We use the UV-VIS-derived compositional information and the spectral properties of craters, and their ejecta as drill holes through the mare-basalt surface to investigate the thickness and composition of underlying material. With this information we attempt to piece together the stratigraphy and geologic history of the Imbrium-Procellanim region. We processed the five-band multispectral data from the Clementine Mission (415, 750,900,950, and 1000nm) using ISIS software and calibration parameters developed by the USGS, Flagstaff, Arizona. Final image mosaics are in equal-area sinusoidal projection, and have a resolution of 250 m/pixel. Using the method of we produced maps of FeO and Ti02 composition. Here we examine the Th, FeO, and Ti02 composition and spectral properties of the craters discussed above and their ejecta, with the goal of describing the materials they excavate. One interpretation for the origin of the high-Th material is that subsurface KREEPy materials have been excavated by impact craters. The material excavated may be either volcanic KREEP (e,g., Apennine Bench Formation), KREEPy impact-melt breccia formed by the Imbrium impact (e.g., Fra Mauro Formation), or other KREEP-rich crustal material. Determining which type of material is responsible for the elevated Th and its extent is important to understanding the premare and possibly the prebasin stratigraphy of the Imbrium-Procellarum Region. Merging the 5 deg. Th data with the shaded relief map, we observe that the highest Th concentrations are not related to pre-Imbrium upper crustal materials. The Apennines, Alpes, and Caucasus Mountains represent the pre-Imbrian highlands material and do not express concentrations of Th, FeO, and TiO2 as high as the most Th-fich materials exposed within the Procellarum KREEP Terrane. We observe that, in general, these massifs contain 10-14 wt% FeO and 4-7 ppm Th. Determining whether the Th signal is from KREEP basalts or KREEPy impact-melt breccias cannot be done with the Clementine data because the two rock types are compositionally and mineralogically too similar (e.g., the Th-rich, mafic impact-melt breccias in the Apollo sample collection are dominated by a KREEP-basalt like component. Mapping-the distribution and sizes of craters and whether they display elevated Th concentrations or not, should reveal the depth and thickness of the KREEP-rich materials, and whether they are ubiquitous (i.e., impact-melt breccia) or more randomly distributed; this might be taken as an indicator of localized KREEP-basalt flows. Within the southeastern region of the Imbrium basin, there are two Th hot spots. The first is associated with the crater Aristillus, and the latter with the Apennine Bench Formation. Adjacent to these two hot spots are craters with a lower Th signature: Archimedes and Autolycus. We observe in the ejecta of Aristillus, a region of significantly lower FeO (10-14 wt%) relative to the surrounding mare basalt. The crater Autolycus, 50 km to the south, did not excavate similar low-FeO material. We suggest that the lower-FeO material in the ejecta of Aristillus corresponds to Th-rich material; the FeO content observed in Aristillus ejecta is comparable to that of KREEP basalt or mafic impact melt breccia (10-12 wt% FeO). We determine that this low FeO, Th-rich material is volcanic KREEP, as opposed to Imbrium impact melt, on the basis that the low-Fe material is exposed more prominently in ejecta in the northern portion of Aristillus. Our assumption is that if the layer underlying Aristillus was continuous, a more widespread and uniform low-Fe signature wouldbe observed in the ejecta deposit. Archimedes, 110 km southwest of Aristillus, impacted the northern portion of the Apennine Bench prior to the eruption of KREEP basalt. Archimedes rim material is not as enriched in Th as the Apennine Bench, and there are differences between the two in FeO concentration and in their continuum slope. Archimedes exhibits a much steeperor "redder" continuum slope than the Apennine Bench. This steepslope suggests the presence of glassy material. The glassy material is concentrated around an unnamed crater on the southern rim of Archimedes (4.5W, 28.2N) and along the northern rim of Archimedes. We suggest two possibilities, or a combination of the two, to explain the low-Th signal from Archimedes: (1) The Apennine Bench prior to KREEP basalt eruption was lower in Th (4-7 ppm, e.g., similar to the Apennine massifs) and KREEP basalts are absent in the rim of Archimedes; or (2) the glassy (possibly pyroclastic) material layering the rim of the Archimedes, dilutes any high-Th material present with low-Th material. (Additional information is contained in the original)
Document ID
20000040494
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Gillis, J. J.
(Washington Univ. Saint Louis, MO United States)
Jolliff, B. L.
(Washington Univ. Saint Louis, MO United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Publication Information
Publication: Workshop on New Views of the Moon 2: Understanding the Moon Through the Integration of Diverse Datasets
Subject Category
Lunar And Planetary Science And Exploration
Funding Number(s)
CONTRACT_GRANT: NAG5-6784
CONTRACT_GRANT: NAG5-4172
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available