NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mission Design Overview for Mars 2003/2005 Sample Return MissionIn May 2003, a new and exciting chapter in Mars exploration will begin with the launch of the first of three spacecraft that will collectively contribute toward the goal of delivering samples from the Red Planet to Earth. This mission is called Mars Sample Return (MSR) and will utilize both the 2003 and 2005 launch opportunities with an expected sample return in October 2008. NASA and CNES are major partners in this mission. The baseline mission mode selected for MSR is Mars orbit rendezvous (MOR), analogous in concept to the lunar orbit rendezvous (LOR) mode used for Apollo in the 1960s. Specifically, MSR will employ two NASA-provided landers of nearly identical design and one CNES-provided orbiter carrying a NASA payload of rendezvous sensors, orbital capture mechanisms, and an Earth entry vehicle (EEV). The high-level concept is that the landers will launch surface samples into Mars orbit, and the orbiter will retrieve the samples in orbit and then carry them back to Earth. The first element to depart for Mars will be one of the two landers. Currently, it is proposed that an intermediate class launch vehicle, such as the Boeing Delta 3 or Lockheed Martin Atlas 3A, will launch this 1800-kg lander from Cape Canaveral during the May 2003 opportunity. The lander will utilize a Type-1 transfer trajectory with an arrival at Mars in mid-December 2003. Landing will be aided by precision approach navigation and a guided hypersonic entry to achieve a touchdown accuracy of 10 km or better. Although the exact landing site has not yet been determined, it is estimated that lander resource constraints will limit the site to between 15 degrees north and south latitudes. Following touchdown, the lander will deploy a six-wheeled, 60-kg rover carrying an extensive suite of instruments designed to aid in the analysis of the local terrain and collection of core samples from selected rocks. The surface mission is currently designed around a concept called the surface traverse. Each traverse will involve the rover exploring a selected area of terrain up to 100 meters from the lander, the collection of rock core samples, and the delivery of the samples from the traverse back to a sample canister on the lander. Planning estimates indicate that up to three traverses may be possible during the expected 90-sol lifetime of the lander. The canister that will receive the samples from the rover will be attached to the top stage of a small solid-fueled rocket mounted to the deck of the lander. This rocket is called the Mars Ascent Vehicle (MAV) and consists of three stages weighing a total of about 140 kg. After the conclusion of the surface mission, the MAV will lift-off and insert the sample canister into a near-circular orbit with an altitude of about 600 km and inclination of 45 degrees. The sample canister will wait in this orbit until it is retrieved by the orbiter sometime in early 2007. In August 2005, the second lander and a CNES-provided orbiter weighing 2700 kg will depart for Mars. Currently, it is proposed that a single Ariane 5 provided by CNES will launch both of these two elements onto a Type-2 transfer trajectory. Although the orbiter and lander will be launched together, they will separate shortly after injection and will fly to Mars as two independent spacecraft. However, both spacecraft will perform a maneuver between 10 and 15 days after launch so that their arrival times at Mars differ by between 12 and 24 hours. This scheme will reduce the operational complexity at the encounter date. A set of four 60-kg surface probes will ride piggyback on the orbiter to Mars. These CNES-provided probes are called Netlanders and will serve as surface stations for scientific investigations independent of the Mars Sample Return goals. Starting approximately one month prior to arrival at Mars, the orbiter will begin to release the Netlanders one at a time. Each release cycle will take several days, and will include time for precision navigation to execute one or two maneuvers that will target the Netlanders to their proper landing site. All four deployment cycles will be completed prior to 10 days before arrival. Both the orbiter and lander will arrive in late-July 2006. Upon arrival, the lander will perform a precision landing and surface mission similar in concept to the one that was executed during the 2003 opportunity. Although the landing site for the 2005 opportunity has not been selected, it is expected to be different from the 2003 site to enhance the diversity of the collected samples. The orbiter's arrival at Mars will be highlighted by the first use of aerocapture to insert a spacecraft into a capture orbit around another planet. The choice of aerocapture, as opposed to a propulsive orbit insertion, was considered mission enabling due to a reduction of over 2000 m/s in mission AV. Aerocapture will be targeted to produce a 250 km x 1400 km capture orbit with an inclination of 45 degrees. Current analysis indicates that achieving this goal will require approximately six minutes of flight deep in the atmosphere with a targeted periapsis of approach of about 43 km. After factoring into account the penalty for carrying a heat shield to survive aerocapture, the net savings compared to a propulsive orbital insertion amounts to several hundred kilograms.
Document ID
20000055752
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other
Authors
Lee, Wayne J.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
DAmario, Louis A.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Roncoli, Ralph B.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Smith, John C.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Astronautics (General)
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available