NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Automation of the CFD Process on Distributed Computing SystemsA script system was developed to automate and streamline portions of the CFD process. The system was designed to facilitate the use of CFD flow solvers on supercomputer and workstation platforms within a parametric design event. Integrating solver pre- and postprocessing phases, the fully automated ADTT script system marshalled the required input data, submitted the jobs to available computational resources, and processed the resulting output data. A number of codes were incorporated into the script system, which itself was part of a larger integrated design environment software package. The IDE and scripts were used in a design event involving a wind tunnel test. This experience highlighted the need for efficient data and resource management in all parts of the CFD process. To facilitate the use of CFD methods to perform parametric design studies, the script system was developed using UNIX shell and Perl languages. The goal of the work was to minimize the user interaction required to generate the data necessary to fill a parametric design space. The scripts wrote out the required input files for the user-specified flow solver, transferred all necessary input files to the computational resource, submitted and tracked the jobs using the resource queuing structure, and retrieved and post-processed the resulting dataset. For computational resources that did not run queueing software, the script system established its own simple first-in-first-out queueing structure to manage the workload. A variety of flow solvers were incorporated in the script system, including INS2D, PMARC, TIGER and GASP. Adapting the script system to a new flow solver was made easier through the use of object-oriented programming methods. The script system was incorporated into an ADTT integrated design environment and evaluated as part of a wind tunnel experiment. The system successfully generated the data required to fill the desired parametric design space. This stressed the computational resources required to compute and store the information. The scripts were continually modified to improve the utilization of the computational resources and reduce the likelihood of data loss due to failures. An ad-hoc file server was created to manage the large amount of data being generated as part of the design event. Files were stored and retrieved as needed to create new jobs and analyze the results. Additional information is contained in the original.
Document ID
20000064583
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Tejnil, Ed
(MCAT Inst. Moffett Field, CA United States)
Gee, Ken
(MCAT Inst. Moffett Field, CA United States)
Rizk, Yehia M.
(NASA Ames Research Center Moffett Field, CA United States)
Date Acquired
August 19, 2013
Publication Date
February 1, 2000
Publication Information
Publication: Welcome to the NASA High Performance Computing and Communications Computational Aerosciences (CAS) Workshop 2000
Subject Category
Computer Programming And Software
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available