NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Observations of Land Surface Variability Using Passive Microwave SensingUnderstanding the global variability of land surface wetness (soil moisture), skin temperature, and related surface fluxes of heat and moisture is key to assessing the importance of the land surface in influencing climate. The feasibility of producing model estimates of these quantities is being studied as part of the International Satellite Land Surface Climatology Project (ISLSCP) Global Soil Wetness Project (GSWP). In the GSWP approach, meteorological observations and analyses are used to drive global circulation models. Satellite measurements can provide independent estimates of key land surface parameters that are needed for initializing and validating the climate models and for monitoring long-term change. Satellite observations of the land surface can also be assimilated into soil models to estimate moisture in the root zone. In our research, passive microwave satellite data recorded during 1978-1987 from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are being used to examine spatial and temporal trends in surface soil moisture, vegetation, and temperature. These data include observations at C and X bands (6.6 and 10.7 GHz), which are not available on the current Special Sensor Microwave/Imager (SSM/I) and are precursors to data that will become available from the Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite (ADEOS-II) and Earth Observing System (EOS) PM1 in the year 2000. A chart shows a time-series of SMMR-derived surface temperature, T-e and surface soil moisture M, retrieved on a 0.5 deg x 0.5 deg grid and further averaged over a 4 deg x 10 deg study region in the African Sahel. Also shown are National Center for Environmental Prediction (NCEP) model outputs of surface temperature, T-sfc, and soil wetness, Soil-w. The variables have been scaled to have similar dynamic ranges on the plots. The NCEP data from the NCEP Reanalysis Project are monthly averages on a 2.5 deg x 2.5 deg grid averaged over the 4 deg x 10 deg study area. Comparisons of SMMR retrievals with forecast model output show the potential of the satellite data for validating model output and monitoring long-term trends. Continuing work will extend these results to other regions to validate the retrievals more quantitatively. In preparation for the launch of AMSR, field experiments are planned in collaboration with the Global Energy and Water Cycle Experiment (GEWEX) Coordinated Enhanced Observing Period (CEOP) experiments to evaluate the satellite-derived soil moisture measurements and to demonstrate their usefulness for land surface hydrology and climate. Additional information is contained in the original.
Document ID
20000070387
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other
Authors
Njoku, Eni G.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 19, 2013
Publication Date
April 1, 1999
Publication Information
Publication: Climate Variability Program
Subject Category
Earth Resources And Remote Sensing
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available