NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Estimates of Ground Temperature and Atmospheric Moisture from CERES ObservationsA method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters. Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (Delta)T to about 20% for (Delta)q(sub t). Our initial application of the methodology employed an early CERES-TRMM data set (CLR and Radwn) to assess the quality of the GEOS2 data. The results showed that over the tropical and subtropical oceans GEOS2 is, in general, too wet in the upper troposphere (mean bias of 0.99 mm) and too dry in the lower troposphere (mean bias of -4.7 mm). We note that these errors, as well as a cold bias in the Tg, have largely been corrected in the current version of GEOS-2 with the introduction of a land surface model, a moist turbulence scheme and the assimilation of SSTM/I total precipitable water.
Document ID
20000108865
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Wu, Man Li C.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Schubert, Siegfried
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Einaudi, Franco
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Geophysics
Meeting Information
Meeting: Radiation
Location: Saint Petersburg
Country: Russia
Start Date: July 24, 2000
End Date: July 29, 2000
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available