NTRS - NASA Technical Reports Server

Back to Results
Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and OperationDuring a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. Furthermore, the pull forces on the front lever diminished about 50 % when subjects wore the pressurized suits. Based on these results from this study, it was recommended to NASA that the levers should not be located in the back position. In addition, further investigation is needed on whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.
Document ID
Document Type
Preprint (Draft being sent to journal)
Maida, J. (NASA Johnson Space Center Houston, TX United States)
Rajulu, Sudhakar L. (Lockheed Martin Space Mission Systems and Services Houston, TX United States)
Bond, Robert L.
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Man/System Technology and Life Support
Funding Number(s)
Distribution Limits
Work of the US Gov. Public Use Permitted.