NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first two months of MGS mapping. Many of these craters are included in Nadine Barlow's Catalogue of Martian Impact Craters, although we have treated simple craters smaller than about 7 km in greater detail than all previous investigations. Additional information is contained in the original extended abstract.
Document ID
20000110334
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Garvin, J. B.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Sakimoto, S. E. H.
(Universities Space Research Association Greenbelt, MD United States)
Schnetzler, C.
(Science Systems and Applications, Inc. Greenbelt, MD United States)
Frawley, J. J.
(Hughes STX, Inc. Greenbelt, MD United States)
Date Acquired
August 19, 2013
Publication Date
July 1, 1999
Publication Information
Publication: The Fifth International Conference on Mars
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available