NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Selection and Assessment of Predictions of the Mars Pathfinder Landing SiteThe successful landing of the Mars Pathfinder spacecraft on Mars allows the review of the process of selecting the landing site and assessing predictions made for the site based on Viking and Earth-based data. Selection of the landing site for Mars Pathfinder was a two-phase process. The first phase took place from October 1993 to June 1994 and involved: initial identification of engineering constraints, definition of environmental conditions at the site for spacecraft design, and evaluation of the scientific potential of different landing sites. This phase culminated with the first "Mars Pathfinder Landing Site Workshop", held at the Lunar and Planetary Institute in Houston, Texas on April 18-19, 1994, in which suggested approaches and landing sites were solicited from the entire scientific community. A preliminary site was selected by the project for design purposes in June 1994. The second phase took place from July 1994 to March 1996 and involved: developing criteria for evaluating site safety using images and remote sensing data, testing of the spacecraft and landing subsystems (with design improvements) to establish quantitative engineering constraints on landing site characteristics, evaluating all potential landing sites on Mars, and certification of the site by the project. This phase included a second open workshop, "Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington" held in Spokane and Moses Lake September 24-30, 1995 and formal acceptance of the site by NASA Headquarters. Engineering constraints on Pathfinder landing sites were developed from the initial design of the spacecraft and the entry, descent and landing scenario. The site must be within 5 degrees of the subsolar latitude at the time of landing (15N for maximum solar power and flexible communications with Earth. It also must be below 0 km elevation to enable enough time for the parachute to bring the lander to the proper terminal velocity for landing. The entire landing ellipse, which is 70 km by 200 km due to navigational, ephemeris and atmospheric uncertainties, must be free of steep slopes, scarps and obvious hazards in Viking orbiter images, have acceptable radar reflectivity, moderate rock abundances and have little or no dust. Scientific considerations of the Mars Pathfinder payload and mission indicate that analyses of "grab bag" samples at the mouths of outflow channels can offer a first order assessment of a variety of rock types on Mars. Highland sites offer the advantage of in situ analysis of ancient rocks on Mars that record crustal differentiation and the nature of the early environment. Dark gray sites offer the potential of analyzing unweathered and unoxidized materials. Following a general assessment of the safety of different sites, a preliminary selection of a "grab bag" site was made. This site, Ares Vallis, is near the mouth of an outflow channel that may contain ancient Noachian terrain, Hesperian ridged plains, and reworked channel materials. All potential landing sites on Mars that met basic safety criteria were analyzed in detail. Sites (100 by 200 km target ellipses) were considered safe if they were below 0 km elevation, were free of obvious hazards (high relief surface features) in high-resolution (< 50 m/pixel) Viking orbiter images and had acceptable reflectivity and roughness at radar wavelengths, high thermal inertia, moderate rock abundance, low red to violet ratio, and low albedo. Only 4 sites on Mars met all the above criteria, which included 1995 opposition 3.5 cm delay-Doppler radar data. Complete data were evaluated for 7 sites and the Viking landing sites for comparison for all the above criteria as well as crater abundance, hill and mesa abundance, slopes over meter to kilometer scales, low altitude winds (from global circulation models and slopes), the size-frequency distribution of large rocks, as well as rover trafficability and science potential. Discussion of potential hazards at Ares Vallis using a variety of data sets (including radar) at a second open workshop, indicated this site cannot be shown to be any more hazardous than the Viking landing sites. Field trips to the Channeled Scabland and the Ephrata Fan, analogs for Ares Vallis and the landing site, respectively, provided valuable insight into possible geologic processes and potential surface characteristics. Three sites met all the data requirements and safety criteria for landing Pathfinder. Ares Vallis was selected by the project because it appeared acceptably safe (although it appeared to have greater rock abundances than other sites, its elevation was likely the best known) and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which would enable addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early martian environment and its subsequent evolution. The selection was reviewed by an external board at a number of meetings and accepted, and the site was approved by NASA Headquarters. Data gathered by the Pathfinder lander' and rover provides the opportunity to test the predictions made for the site in the selection process based on remote observations from Earth, orbit, and the surface. The discussion below is taken from Golombek et al. to which the reader is referred for a more complete discussion and a complete list of references, which are omitted here for brevity. Many characteristics of the landing site are consistent with its being shaped and deposited by the Ares and Tiu catastrophic floods. The rocky surface is consistent a depositional plain comprising semi-rounded pebbles, cobbles and tabular boulders (some of which appear imbricated and/or inclined in the direction of flow) that appear similar to depositional plains in terrestrial catastrophic floods. The Twin Peaks appear to be streamlined hills in lander images, which is consistent with interpretations of larger hills in Viking orbiter images of the region that suggest the lander is on the flank of a broad, gentle ridge trending northeast from Twin Peaks. This ridge, which is the rise to the north of the lander, is aligned in the downstream direction from the Ares and Tiu Valles floods, and may be a debris tail deposited in the wake of the Twin Peaks. Channels visible throughout the scene may be a result of late stage drainage. As predicted by delay-Doppler radar measurements and tracking results, the average elevation of the center of the site was about the same as Viking Lander I relative to the 6.1 mbar geoid. The Doppler tracking and two-way ranging estimate for the elevation of the spacecraft is only 45 in lower than the Viking I Lander and within 100 in of that expected, which is within the uncertainties of the measurements. After landing, surface pressures and winds (5-10 m/s) were found to be similar to expectations based on Viking data, although temperatures were about 10 K warmer. The temperature profile below 50 km was also roughly 20 K warmer. As a result, predicted densities were 5% higher near the surface and up to 40% lower at 50 km but within the entry, descent and landing design margins. The populations of craters and small hills and the slopes of the hills measured in high-resolution (38 m/pixel) Viking orbiter images and the radar derived slopes of the landing site are all consistent with observations of these properties in the lander images. A rocky surface was expected from Viking Infra-Red Thermal Mapper (IRTM) observations and comparisons with the Viking landing sites. The observed cumulative fraction of area covered by rocks with diameters greater than 3 cm and heights greater than 0.5 in (potentially hazardous to landing) at Ares is similar to that predicted by IRTM observations and models of Viking lander and Earth analog rock size-frequency distributions. The IRTM prediction postulated an effective thermal inertia of 30 (10(exp -3) cgs units - cal/cubic cm/s(exp 0.5)/K) for the rock population, but we obtain a slightly different effective thermal inertia for the actual rock population. The validity of interpretations of radar echoes prior to landing are supported by a simple radar echo model, an estimate of the reflectivity of the soil from its bulk density, and the fraction of area covered by rocks. In the calculations, the soil produces the quasi-specular echo and the rocks produce the diffuse echo. The derived quasispecular cross section is comparable to the cross-sections and reflectivities reported for 3.5-cm wavelength observations. The model yields a diffuse echo that is modestly larger than the polarized diffuse echo reported for 3.5-cm wavelength observations. At 12.5-cm wavelength, similar rock populations at Ares and the Viking I site were expected because the diffuse echoes are comparable, but the large normal reflectivities suggests that bulk densities of the soils at depth are greater than those at the surface. We also obtain a fine-component inertia near 8.4 which agrees with the fine-component inertia of 8.7 (in 10(exp -3) cgs units) estimated from thermal observations from orbit by the IRTM; for this estimate, we used a bulk thermal inertia of 10.4 for the landing site, an effective thermal inertia near 40 (10(exp -3) cgs units) for the rock population, and a graphical representation of Kieffer's model. Color and albedo data for Ares suggested surfaces of materials at Ares Vallis would be relatively dust free or unweathered prior to landing compared with the materials at the Viking landing sites. This suggestion is supported by the abundance of relatively dark-gray rocks at Ares and their relative rarity at the Viking landing sites, where rocks are commonly coated with bright red dust. Finally, the 40 km long Ephrata Fan of the Channeled Scabland in Washington state, which was deposited where c
Document ID
20000112989
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
Authors
Golombek, M. P.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Moore, H. J.
(Geological Survey Menlo Park, CA United States)
Haldemann, A. F. C.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Cook, R. A.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Parker, T. J.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Schofield, J. T.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1998
Publication Information
Publication: Mars Surveyor 2001 Landing Site Workshop
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available