NTRS - NASA Technical Reports Server

Back to Results
Deep Basalt Aquifers in Orcus Patera, Elysium Basin Mars: Perspectives for Exobiology ExplorationDirect indicators of shorelines, spillways, and terraces allowed to determine the extent of the Elysium Paleolake between the contour-lines 1000 and 500 m below the Martian datum. The Elysium Paleolake is bordered north by Orcus Patera (14N/181W), which lies west of the Tartarus Montes and Tartarus Colles. The Orcus Patera displays an ellipse-shaped collapsed caldera of 360-km long and 100-km wide. Viking topographic data show that the bottom of the caldera is located at 2500 below the Martian datum, and surrounded by a steep-walled ram art which crest is located at about 0 m elevation. Considering the localization of Orcus Patera in the Elysium paleolake, its altimetry, and the magmatic origin of this caldera, we propose the existence of a paleolake in Orcus Patera generated (a) by juvenile water from magma during the Noachian period, and (b) by intermittent influx of the Elysium Basin from Hesperian to Amazonian. Results are encouraging to consider this site as a potential high-energy source environment for microbial communities. are circumscribed by a 50-km wide lava field mapped as Noachian material. The structure of Orcus Patera represents the record of material erupted from a magmatic reservoir. The caldera is enclosed by steep inner walls (25% measured from topographic data), values which could be in agreement with the presence of a deep magmatic reservoir, as suggested by the typology of Crumpler The depth of the caldera might be due to the collapse of the magma reservoir, and the release of gases accompanying the magma thermal evolution. Origins of water for the paleolake(s): The water that generated a paleolake in Orcus Patera may have come from two origins: (1) Juvenile water: Plescia and Crips estimated a magma H20 content by weight between 0.5% and 1.5% using for the first value a comparison with terrestrial basalt, and for the second values from a Martian meteorite. The amount of H20 can be estimated by the volume of erupted lava, and the lava content of the caldera. In this study, we adopt a water content of 1%. The total volume of magma that has been contained in the caldera, and the volume of lava contained in the observed lava field is about 110 x 10(exp 6) cubic km, that gives a total volume of 1.10 x 10(exp 6) cubic km of water. The juvenile water expelled by the overpressure within the magma chamber charged with desolved water-vapor may have moved into the crust. The decrease in overburden pressure led to bubble formation. The ascent of these bubbles generated a pressurization of the magma, which was sufficient to fracture the overlaying magma layer, (2) Water from Elysium paleolake. During the Amazonian, the rise of the Elysium paleolake level generated an overspilling that supplied the caldera with water. The southern portion of the crest shows a deep gap 12-km wide at -1500 m elevation, locating the gap between 500 to 1000 in below the assumed water of Elysium paleolake, thus facilitating the influx of Elysium paleolake water into Orcus Patera. Bathymetric calculations give a floor area of 25,500 sq km at -2000 m elevation, and a water volume of 42,000 cubic km, with a lake-level at -1500 m. A substantial amount of water may have percolated through the fractured lava, and part of the volume may have overspilled the northern crest of Orcus Patera to debouch in the Tartarus Montes region. We envision the formation of a subsurface aqueous environment in basaltic rocks at the contact of the two water-source origins, possibly the percolating surface lake water, and more likely the juvenile water. Similarly to terrestrial calderas, Orcus Patera might be surrounded by ring-fractures caused by the collapse of the magma chamber that followed the release of gases. These ring-fractures may have been covered later by sedimentation in the caldera (lacustrine, aeolian, and volcanic), and by mass wasting. The detumescence of the magma in the caldera, and the vesiculation of the juvenile water may have operated simultaneously. Comparatively to terrestrial melts, Martian iron-rich melts are denser. This greater density implies greater effusion rates (eight-times terrestrial values), and larger fissuration widths (two-times terrestrial ones). With increasing vesiculation of magma, the bubbles interact with one-another because there are of similar pressure. They make a magma froth at the contact with the caldera surface, and on the walls of the fractures. In the saturated magma, froth, where the volume ratio of gases-to-liquid is about 4:1, the bubbles form a huge surface area of interconnected spaces. Bubbles near the caldera surface disrupt the magma, and fragmentation takes place, which moves downward through the magma column. On Earth, the bubbles are likely to grow between 1 and 50 mm in diameter due to the difference between the magma surface tension, and the bubble supersaturation pressure. The Martian low-pressure at surface level is likely to accelerate the expansion of the bubbles, and increase their final diameter and number, creating more voids in the magma. The strong magma froth with enclosed juvenile water bubbles interconnected with exsolved gas bubbles constitute a potential geothermal environment for geochemical energy production from basalt and water that does not require excessive temperatures. This process can start at +20C. Similar types of environments have been shown on Earth as potential energy sources for microbial metabolism, and could have provided deep aqueous basaltic niches for possible Martian microorganisms, even geologically recently. During the Amazonian, combination of volcanism and water activity still existed on Mars. Moreover, this type of potential niches open ways for investigation of possible oases of extinct or extant life, not only on paleolakes, and surface hydrothermalism spring areas, but also all large systems of fossae, which combine hydrologic and volcanic activities, and which provide an energy source, and an underground shelter to prevent surface UV bombardment. Additional information contained in the original.
Document ID
Document Type
Conference Paper
Grin, E. A. (NASA Ames Research Center Moffett Field, CA United States)
Cabrol, N. A. (NASA Ames Research Center Moffett Field, CA United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1998
Publication Information
Publication: Mars Surveyor 2001 Landing Site Workshop
Subject Category
Lunar and Planetary Science and Exploration
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle20000112986Analytic PrimaryMars Surveyor 2001 Landing Site Workshop
Document Inquiry