NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Modeling the Dynamics of the Middle Atmosphere and Lower Thermosphere Under the Influence of Gravity WavesOur Numerical Spectral Model (NSM), which extends from the ground up into the thermosphere, is non-linear, time-dependent and has been employed for 2D and 3D applications. The standard version of the NSM incorporates Hines' Doppler Spread Parameterization for small scale gravity waves (GW), but planetary waves generated in the troposphere have also been incorporated. The NSM has been applied to describe: (1) the anomalous seasonal variations of the zonal circulation and temperature in the upper mesosphere, (2) the equatorial oscillations (quasi-biennial and semi-annual oscillations (QBO and SAO)) extending from the stratosphere into the upper mesosphere, (3) the diurnal and semi-diurnal tides, and (4) the planetary waves that are excited in the mesosphere. With the emphasis to provide understanding, we present here results from numerical experiments with the NSM that shed light on the GW processes that are of central importance in the mesosphere and lower thermosphere. These are our conclusions: (1) The large semiannual variations in the diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength, but variations in eddy viscosity associated with GW interactions are also important. (2) The semidiurnal tide (SDT) and its phase in particular, is strongly influenced by the mean zonal circulation. The SDT, individually, is also amplified by GW. But the DT filters out GW such that the GW interaction effectively reduces the amplitude of the SDT, producing a strong nonlinear interaction between the DT and SDT. (3) Without external time dependent energy or momentum sources, planetary waves (PW) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 40 m/s and periods between 50 and 2 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW induced reversal in the latitudinal temperature gradient) is playing an important role. Numerical experiment show that GW, directly, also greatly amplify the PW. A common feature of the PW generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large, which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PW propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter at altitudes below 80 km. (4) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT. In summary we conclude that GW play major roles in generating and amplifying the dynamical components in the MLT region and, acting principally through wave filtering, produce important non-linear interactions between the components.
Document ID
20000118274
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Mayr, H. G.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Mengel, J. G.
(Emergent Technologies Corp. United States)
Chan, K. L.
(Hong Kong Univ. of Science and Technology Hong Kong)
Porter, H. S.
(Furman Univ. Greenville, SC United States)
Einaudi, Franco
Date Acquired
August 19, 2013
Publication Date
September 6, 2000
Subject Category
Geophysics
Meeting Information
Meeting: Thermosphere
Location: Clemson, SC
Country: United States
Start Date: September 25, 2000
End Date: September 26, 2000
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available