NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Modeling of Optoelectronic DevicesUltrafast modulation of semiconductor quantum well (QW) laser is of technological importance for information technology. Improvement by order(s) of magnitude in data transfer rate is possible as terahertz (THz) radiation is available for heating the laser at picosecond time scale. Optical gain modulation in the QW is achieved via temperature modulation of electron-hole plasma (EHP). Applications include free-space THz communication, optical switching, and pulse generation. The EHP in the semiconductor QW is described with a two-band model. Semiconductor Bloch equations with many-body effects are used to derive a hydrodynamical model for the active QW region. Because of ultrafast carrier-carrier scatterings in the order of 50 fs, EHP follows quasiequilibrium Fermi-Dirac distributions and THz field interacts incoherently with it. Carrier-longitudinal optical (LO) phonon scatterings and coherent laser-EHP interaction are treated microscopically in our physical model. A set of hydrodynamical equations for plasma density, temperature, and laser envelop amplitude are derived and Runge-Kutta method is adopted for numerical simulation. A typical 8 nm GaAs/Al(0.3)Ga(0.7) As single QW at 300 K is used. Additional information is contained in the original extended abstract.
Document ID
20000121204
Acquisition Source
Ames Research Center
Document Type
Preprint (Draft being sent to journal)
Authors
Li, Jian-Zhong
(NASA Ames Research Center Moffett Field, CA United States)
Woo, Alex C.
Date Acquired
August 19, 2013
Publication Date
January 1, 2000
Subject Category
Optics
Funding Number(s)
CONTRACT_GRANT: NAS2-14303
PROJECT: RTOP 519-40-12
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available