NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Equiaxed Dendritic Solidification Experiment (EDSE)The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during equiaxed dendritic solidification. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion-dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of interaction "strengths" between the crystals. The experiment extends the microgravity measurements of Glicksman and co-workers isothermal dendritic growth experiment (IDGE) for steady growth of a single dendrite to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation closer to actual casting conditions. Corresponding Earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.
Document ID
20010057213
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Beckermann, C.
(Iowa Univ. United States)
Karma, A.
(Northeastern Univ. Boston, MA United States)
Steinbach, I.
(Aachener Centrum fuer Erstarrung unter Schwerelosigkeit e.V. Germany)
deGroh, H. C., III
(NASA Glenn Research Center Cleveland, OH United States)
Date Acquired
August 20, 2013
Publication Date
March 1, 2001
Publication Information
Publication: Microgravity Materials Science Conference 2000
Volume: 1
Subject Category
Solid-State Physics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available