NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon
 

Record Details

Record 10 of 5586
Mars Global Surveyor Ka-Band Frequency Data Analysis
Author and Affiliation:
Morabito, D.(Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA United States)
Butman, S.(Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA United States)
Shambayati, S.(Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA United States)
Abstract: The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (f(sub x)-f(sub ka)/3.8) data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment for the feed and electronics equipment. A dichroic plate is used to reflect the X-band energy and pass the Ka-band energy to another mirror. The RF energy for each band is then focused onto a feed horn and low-noise amplifier package. After amplification and RF/IF downconversion, the IF signals are sent to the Experimental Tone Tracker (ETT), a digital phase-lock-loop receiver, which simultaneously tracks both X-band and Ka-band carrier signals. Once a signal is detected, the ETT outputs estimates of the SNR in a I -Hz bandwidth (Pc/No), baseband phase and frequency of the signals every I -sec. Between December 1996 and December 1998, the Ka-band and X-band signals from MGS were tracked on a regular basis using the ETT. The Ka-band downlink frequencies described here were referenced to the spacecraft's on-board USO which was also the X-band frequency reference (f(sub ka)= 3.8 f(sub x)). The ETT estimates of baseband phase at I -second sampled time tags were converted to sky frequency estimates. Frequency residuals were then generated for each band by removing a model frequency from each observable frequency at each time tag. The model included Doppler and other effects derived from spacecraft trajectory files obtained from the MGS Navigation Team. A simple troposphere correction was applied to the data. In addition to residuals, the USO frequencies emitted by the spacecraft were estimated. For several passes, the USO frequencies were determined from X-band data and from Ka-band data (referred to X-band by dividing by 3.8) and were found to be in good agreement. In addition, X-band USO frequency estimates from MGS Radio Science data acquired from operational DSN stations were available for comparison and were found to agree within the I Hz level. The remaining sub-Hertz differences were attributed to the different models and software algorithms used by MGS Radio Science and KaBLE-11. A summary of the results of a linear fit of the USO frequency versus time (day of year) is presented in Table I for an initial segment of passes.
Publication Date: Jan 01, 2000
Document ID:
20010071552
(Acquired Aug 17, 2001)
Subject Category: LUNAR AND PLANETARY SCIENCE AND EXPLORATION
Document Type: Technical Report
Financial Sponsor: Jet Propulsion Lab., California Inst. of Tech.; Pasadena, CA United States
Organization Source: Jet Propulsion Lab., California Inst. of Tech.; Pasadena, CA United States
Description: 1p; In English
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: No Copyright
NASA Terms: MARS GLOBAL SURVEYOR; EXTREMELY HIGH FREQUENCIES; DATA PROCESSING; BEAM WAVEGUIDES; DEEP SPACE NETWORK; DOWNLINKING; PARABOLIC ANTENNAS; GROUND STATIONS; VOLTAGE CONTROLLED OSCILLATORS
Availability Source: Other Sources
Availability Notes: Abstract Only
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: August 22, 2011
Contact Us