NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Far-Infrared Extragalactic Surveys: Past, Present, and FutureAs much as one third of the luminosity of the local universe is emitted in the far infrared. In order to understand the history of energy release in the universe, it is crucial to characterize this rest-frame far-infrared contribution from the present back to the era of initial galaxy formation. Over the redshift range from 0 to 10, this energy is received in the 80 micrometers to 1 mm spectral region. In the 1980's the Infrared Astronomy Satellite (IRAS) all-sky survey provided the first comprehensive view of the far infrared emission from the local universe. The diffuse background measurements by Cosmic Background Explorer Satellite (COBE) have provided constraints on the integral contributions from the high redshift universe. In the past five years, submillimeter measurements made using the SCUBA instrument have revealed powerful high redshift sources. To develop a clear history of energy release in the universe, we need numbers and redshifts of representative populations of energetically important objects. The near future will bring the Space Infrared Telescope Facility Multiband Imaging Photometer (SIRTF)(MIPS) survey, which will cover about 100 square degrees at wavelengths out to 160 micrometers, providing a large sample of energetically important galaxies out to z of approx.3. In 2005, the Japanese IRIS survey will provide a 160 micrometers full sky survey, which will provide larger samples of the high z galaxy populations and will find intrinsically rare high luminosity objects. The SPIRE instrument on the FIRST facility will extend these surveys to longer wavelengths, providing a view of the universe at higher redshifts in three spectral bands. A concept for an all-sky submillimeter survey is under development, called the Survey of Infrared Cosmic Evolution (SIRCE). With a 2 m cryogenic telescope, it can map the entire sky to the confusion limit in the 100 to 500 micrometers range in six months. This survey will provide photometric redshifts, number counts, and will find the most luminous objects in the universe. In the next decade, the opening of the submillimeter, combined with the near infrared capability of NGST will provide us with a clear picture of energy release in the early universe.
Document ID
20010073391
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Moseley, Samuel H., Jr.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Fisher, Richard R.
Date Acquired
August 20, 2013
Publication Date
January 3, 2001
Subject Category
Structural Mechanics
Meeting Information
Meeting: AAS Conference
Country: Unknown
Start Date: June 1, 2001
Sponsors: American Astronomical Society
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available