NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Structural Qualification Testing of the WindSat Payload Using Sine Bursts Near Structural ResonanceSine burst tests are often used for structural qualification of space flight hardware. In most instances, the driving frequency of the shaker is specified far below the structure's first resonant mode, such that the entire test article sees uniform acceleration. For large structures, this limits qualification testing to lower parts of the structure, or else it over-tests the lower structure to achieve qualification of the upper structure. The WindSat payload, a 10.5 foot tall graphite/epoxy, titanium, and aluminum radiometer, experiences accelerations at the six foot diameter reflector nearly four times that at the spacecraft interface. Due to size of the payload, the number of bonded joints, and the lightweight reflector support structure design and construction, using static pull testing to qualify all of the bonded joints in the upper structure would result in large, expensive, and extensive test fixturing. Sine burst testing near the first two structural resonant modes was performed on the WindSat payload to achieve the correct load factor distribution up the stack for structural qualification. In this presentation, how finite element method (FEM) sine burst predictions were used in conjunction with low level random and sine burst tests to achieve correct qualification test load factor distribution on the WindSat payload is discussed. Also presented is the risk mitigation approach for using the uncorrelated FEM in this procedure.
Document ID
20010089252
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Pontius, Jim
(Swales Aerospace Beltsville, MD United States)
Barnes, Donald
(Swales Aerospace Beltsville, MD United States)
Broduer, Steve
Date Acquired
August 20, 2013
Publication Date
January 3, 2001
Subject Category
Spacecraft Design, Testing And Performance
Meeting Information
Meeting: FEMCI Workshop 2001: Innovative FEM Solutions to Challenging Problems
Location: Greenbelt, MD
Country: United States
Start Date: May 16, 2001
End Date: May 17, 2001
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available