NTRS - NASA Technical Reports Server

Back to Results
Salt Marsh Formation in the Lower Hudson River EstuarySalt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high-resolution studies of these marshes to understand the fluctuations in salinity caused by relative sea level rise, tectonic faulting and/or changes in precipitation/evaporation.
Document ID
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Merley, Michael
(NASA Goddard Inst. for Space Studies New York, NY United States)
Peteet, Dorothy
(NASA Goddard Inst. for Space Studies New York, NY United States)
Hansen, James E.
Date Acquired
August 20, 2013
Publication Date
January 31, 2001
Subject Category
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available