NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon
 

Record Details

Record 80 of 4094
Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions
Author and Affiliation:
Stoker, Carol(NASA Ames Research Center, Moffett Field, CA United States)
Abstract: This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.
Publication Date: Jun 28, 1994
Document ID:
20010116596
(Acquired Dec 07, 2001)
Subject Category: CYBERNETICS, ARTIFICIAL INTELLIGENCE AND ROBOTICS
Document Type: Preprint
Meeting Information: Division for Planetary Sciences Meeting; 30 Oct. 4 Nov. 1994; Washington, DC; United States
Financial Sponsor: NASA Ames Research Center; Moffett Field, CA United States
Organization Source: NASA Ames Research Center; Moffett Field, CA United States
Description: 1p; In English
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: No Copyright
NASA Terms: COMMUNICATION NETWORKS; COMPUTER GRAPHICS; DATA LINKS; GEOLOGICAL SURVEYS; IMAGING TECHNIQUES; MARSOKHOD MARS ROVING VEHICLES; REMOTE CONTROL; ANTARCTIC REGIONS; EXOBIOLOGY; GROUND BASED CONTROL; INTEGRATED MISSION CONTROL CENTER; MAN MACHINE SYSTEMS; MANIPULATORS; UNDERWATER VEHICLES
Availability Source: Other Sources
Availability Notes: Abstract Only
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: August 22, 2011
Contact Us