NTRS - NASA Technical Reports Server

Back to Results
Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental StudiesRocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that rocks on Mars should erode at a rate of 7.7 to 210 micrometers/yr. These rates cannot have operated over the entire history of the Pathfinder site or elsewhere on Mars, because craters, knobs, and other obstacles would be quickly worn away. More likely, rock abrasion occurs over short time periods when sand supplies are sufficient and saltation friction speeds are frequently reached. Depletion or exhaustion of sand and a decline in wind fluxes at speeds greater than that of saltation friction will then act to reduce the rate of further abrasion. We are currently engaged in a new set of wind tunnel experiments coupled with theoretical models and field studies that address rock abrasion and ventifact formation on Mars and Earth. These studies have implications for the Noachian, when sand supplies were probably more plentiful and the threshold friction speed was possibly lower because of a more dense atmosphere. Under these conditions, erosion rates from the wind could have been much greater than to day, contributing, along with probable fluvial erosion, to the Noachian landscape that is in limited preservation today.
Document ID
Acquisition Source
Jet Propulsion Laboratory
Document Type
Bridges, N. T.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Laity, J. E.
(California State Univ. Northridge, CA United States)
Date Acquired
August 20, 2013
Publication Date
January 1, 2001
Publication Information
Publication: Field Trip and Workshop on the Martian Highlands and Mojave Desert Analogs
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available