NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Potential Evaporite Biomarkers from the Dead SeaThe Dead Sea is located on the northern branch of the African-Levant Rift systems. The rift system, according to one model, was formed by a series of strike slip faults, initially forming approximately two million years ago. The Dead Sea is an evaporite basin that receives freshwater from springs and from the Jordan River. The Dead Sea is different from other evaporite basins, such as the Great Salt Lake, in that it possesses high concentrations of magnesium and has an average pH of 6.1. The dominant cation in the Great Salt Lake is sodium, and the pH is 7.7. Calcium concentrations are also higher in the Dead Sea than in the Great Salt Lake. Both basins are similar in that the dominant anion is chlorine and the salinity levels are approximately 20 %. Other common cations that have been identified from the waters of the Dead Sea and the Great Salt Lake include sodium and potassium. A variety of Archea, Bacteria, and a single genus of a green algal, Dunaliella, has been described from the Dead Sea. Earlier studies concentrated on microbial identification and analysis of their unique physiology that allows them to survive in this type of extreme environment. Potential microbial fossilization processes, microbial fossils, and the metallic ions associated with fossilization have not been studied thoroughly. The present study is restricted to identifying probable microbial morphologies and associated metallic ions. XRD (X Ray Diffraction) analysis indicates the presence of halite, quartz, and orthoclase feldspar. In addition to these minerals, other workers have reported potassium chloride, magnesium bromide, magnesium chloride, calcium chloride, and calcium sulfate. Halite, calcium sulfate, and orthoclase were examined in this report for the presence of microbes, microbially induced deposits or microbial alteration. Neither the gypsum nor the orthoclase surfaces possesses any obvious indications of microbial life or fossilization. The sand-sized orthoclase particles are weathered with 122 extensive fan-shaped mineral deposits. The gypsum deposits are associated with halite minerals and also exhibit extensive weathering. Halite minerals represent the only substrates that have probable rod-shaped microbial structures with long, filamentous, apical extensions. EDS (energy dispersive x-ray) analysis of the putative microbes indicates elevated calcium levels that are enriched with magnesium. The rod-shaped structures exhibit possible fossilization stages. Rhombohedralshaped minerals of magnesium-enriched calcium carbonate are deposited on the microbial surfaces, and eventually coat the entire microbial surface. The sodium chloride continues to crystallize on nearby halite surface and even crystallizes on the fossilized microbial remains. The putative fossils are found exclusively on halite surfaces, and all contained elevated levels of calcium magnesium cations. Both of these metallic cations are associated with microbial activity and fossilization. Their morphological diversity is low in comparison with the reported living Dead Sea microbial population. If we examine the fossil record for multicellular organisms, fossilization rates are lower for soft-bodied organisms than for those possessing hard parts, i.e. shells, bones. For example, smaller, single celled organisms would have a smaller chance of fossilization; their fossilized shapes could be mistaken for abiotic products. Another consideration is that dead organisms in the water column are probably utilized as a food source by other microbes before fossilization processes are completed. This may be an important consideration as we attempt to model and interpret ancient microbial environments either on Earth or on Mars.
Document ID
20020002084
Document Type
Conference Paper
Authors
Morris, Penny A. (Houston Univ. TX United States)
Wentworth, Susan J. (Lockheed Martin Corp. Houston, TX United States)
Thomas-Keprta, Kathie (Lockheed Martin Corp. Houston, TX United States)
Allen, Carlton C. (NASA Johnson Space Center Houston, TX United States)
McKay, David S. (NASA Johnson Space Center Houston, TX United States)
Date Acquired
August 20, 2013
Publication Date
April 1, 2001
Publication Information
Publication: General Meeting of the NASA Astrobiology Insititute
Subject Category
Exobiology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry