NTRS - NASA Technical Reports Server

Back to Results
snc meteorites, organic matter and a new look at vikingRecently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR experiment, a solution containing C-14 labeled organic compounds was injected into soil samples. The detection of radioactivity in the overhead space would indicate that one or more of the substrates had been chemically converted into a carbon-containing gas. To serve as a control, some samples were heated enough to destroy most known terrestrial microbes so that an indication for life would be a positive response from unheated samples and a negative response from heated samples. On Mars, the LR results had met minimum criteria for a biological interpretation but due to the GC-MS results, the LR responses were later attributed to putative soil inorganic oxidants. Since the time of Viking, studies have been carried out with the objective of determining an oxidant or combination of oxidants that might exist on Mars and have produced the observed kinetics of the LR response. To date, no such agent has been found that produces all aspects of the LR results on Mars. While the above considerations in no way imply the existence of life forms at the two Viking landing sites, inorganic and biological explanations for the Viking LR data should now be considered equally plausible until more complete studies of the Martian surface are carried out. Therefore, in light of the SNC meteorites data and their implications for the possibility of organic matter near or on the Martian surface the Viking biology experiments should thus be seen, not as failures for their inability to provide unambiguous evidence for or against Martian life, but as a foundation for the development of future life-detection instruments. Additional information is contained in the original extended abstract.
Document ID
Document Type
Conference Paper
Warmflash, David M.
(NASA Johnson Space Center Houston, TX United States)
Clemett, Simon J.
(Lockheed Martin Space Operations Houston, TX United States)
McKay, David S.
(NASA Johnson Space Center Houston, TX United States)
Date Acquired
August 20, 2013
Publication Date
April 1, 2001
Publication Information
Publication: General Meeting of the NASA Astrobiology Insititute
Subject Category
Distribution Limits
Work of the US Gov. Public Use Permitted.
Document Inquiry