NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
On the Origin of Polar Vortex AirThe existence of the multi-year HALOE CH4 data set, together with some comparisons of forward with back trajectory calculations which we have carried out, has motivated us to reexamine the question of polar vortex descent. Three-dimensional diabatic trajectory calculations have been carried out for the seven month fall to spring period in both the northern hemisphere (NH) and southern hemisphere (SH) polar stratosphere for the years 1992-1999. These computations are compared to fixed descent computations where the parcels were fixed at their latitude-longitude locations and allowed to descend without circulating. The forward trajectory computed descent is always less than the fixed descent due to horizontal parcel motions and variations in heating rates with latitude and longitude. Although the forward calculations estimate the maximum amount of descent that can occur, they do not necessarily indicate the actual origin of springtime vortex air. This is because more equator-ward air can be entrained within the vortex during its formation. To examine the origin of the springtime vortex air, the trajectory model was run backward for seven months from spring to fall. The back trajectories show a complex distribution of parcels in which one population originates in the upper stratosphere and mesosphere and experiences considerable descent in the polar regions, while the remaining parcels originate at lower altitudes of the middle and lower stratosphere and are mixed into the polar regions during vortex formation without experiencing as much vertical transport. The amount of descent experienced by the first population shows little variability from year to year, while the computed descent and mixing of the remaining parcels show considerable interannual variability due to the varying polar meteorology. Because of this complex parcel distribution it is not meaningful to speak of a net amount of descent experienced over the entire winter period. Since the back trajectories indicate that much of the air can come from lower altitudes than would be implied by the forward calculations, using a comparison between pre-winter and post-winter tracer profiles to estimate the amount of descent over this period will give erroneous descent amounts. In order to evaluate the computed descent, spring methane amounts were computed by mapping HALOE fall observations onto the final latitude-altitude locations of the back trajectories. These locations indicate the origin of the spring vortex air. The agreement between the computed means and the spring HALOE means is generally within 0.1-0.2 ppmv in the NH and 0.1-0.4 ppmv in the SH.
Document ID
20020004351
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Rosenfield, J. E.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Schoeberl, M. R.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Einaudi, Franco
Date Acquired
August 20, 2013
Publication Date
January 1, 2001
Subject Category
Geophysics
Report/Patent Number
AGU-04194323
Meeting Information
Meeting: Spring AGU 2001 Meeting
Location: Boston, MA
Country: United States
Start Date: May 29, 2001
Sponsors: American Geophysical Union
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available