NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
global failure modes in composite structuresComposite materials provide well-known advantages for space and aeronautical applications in terms of strength and rigidity to weight ratios and other mechanical properties. As a consequence, their use has experienced a constant increase in the past decades and it is anticipated that this trend will be maintained in the near future. At the same time, being these materials relatively new compared to metals, and having failure characteristics completely different from them, their damage growth and their failure mechanisms are not as well understood in a predictive sense. For example, while in metals fracture produces "clean" cracks with their well defined analytically stress fields at the crack tip, composite fracture is a more complex phenomenon. Instead of a crack, we confront a "damage zone" that may include fiber breakage, fiber microbuckling, fiber pullout, matrix cracking, delamination, debonding or any combination of all these different mechanisms. These phenomena are prevalent in any failure process through an aircraft structure, whether one addresses a global failure such as the ripping of a fuselage or wing section, or whether one is concerned with the failure initiation near a thickness change at stringers or other reinforcement. Thus the topic that has been under consideration has wide application in any real structure and is considered an essential contribution to the predictive failure analysis capability for aircraft containing composite components. The heterogeneity and the anisotropy of composites are not only advantageous but essential characteristics, yet these same features provide complex stress fields, especially in the presence of geometrical discontinuities such as notches, holes or cutouts or structural elements such as stiffeners, stringers, etc. To properly address the interaction between a damage/crack front and a hole with a stringer it is imperative that the stress and deformation fields of the former be (sufficiently well) characterized. The question of "scaling" is an essential concern in any structural materials investigation. For example, experiments in the past have shown that the "strength" of a composite depends on hole size. As a consequence the validity of traditional fracture mechanics concepts applied to composite materials failure must be questioned. The size of the fibers, the dimensions of the laminae, etc. together with the fact that, because of the layered anisotropy, the stress field is no longer two-dimensional, prevent the otherwise obviously confident use of "similarity concepts". Therefore, the question needs to be raised of whether in composites "size matters or not", i.e., whether the results obtained in a laboratory using small coupons are truly representative of the situation involving a full scale component.
Document ID
20020020093
Document Type
Other
Authors
Knauss, W. G.
(California Inst. of Tech. Pasadena, CA United States)
Gonzalez, Luis
(California Inst. of Tech. Pasadena, CA United States)
Date Acquired
September 7, 2013
Publication Date
July 1, 2001
Subject Category
Composite Materials
Funding Number(s)
CONTRACT_GRANT: NAG1-1975
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 20020020093.pdf STI