NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Flight Schedule and the Circadian Clock Influence on Sleep Loss During Overnight Cargo OperationsThirty-four flight crew members were monitored before, during, and after two 8-day overnight cargo duty patterns which involved multiple flights at night crossing no more than one time zone per 24 h. Rectal temperature, heart rate, and wrist activity were recorded every 2 min. Sleep quantity and quality, and nap timing, were noted in a logbook. To reduce the masking effects of physical activity on temperature, 0.28 C was added to each subject's raw temperature data whenever he reported being asleep. For both masked and unmasked data, daily temperature minima were estimated from the multiple complex demodulated waveform. The temperature minima did not show a progressive adaptation to night duty, which was interrupted by a night off after 5 nights on one trip pattern and after 3 nights on the other. On duty days, the average temperature minimum delayed by about 3 h, occurring near the end of the duty period. Daytime sleep episodes averaged 2.9 h shorter than nighttime sleep episodes, and were rated as lighter, less restorative, and poorer overall. Fifty-three percent of subjects slept more than once per 24 h while they were on night duty, compared to 17% when able to sleep at night. The total sleep per 24 h on duty days averaged 1.2 h less than pretrip. Twenty-nine percent of subjects lost more than 2 h of sleep per 24 h across the 8-day duty patterns. After night duty, subjects awoke around 1400 local time, even when they had slept 2-3 h less than a normal nocturnal sleep episode. Consequently, the duration of morning sleep episodes was correlated with the off-duty time (multiple r(sup 2)=0.44, F=37.23, p less than 0.0001). Anecdotally, crew members complained of being unable to sleep longer and not feeling well-rested. These wakeups were clustered 6 h after the temperature minimum, which suggests that they may have been a response to the circadian wakeup signal. Daytime layovers in which crew members were able to sleep again in the evening ended later (0200-0300) and were longer (average 19.2 h versus 14.8 h) than those in which they slept only once in the morning. Overnight cargo crew members are working around the time of the circadian nadir with an accumulating sleep debt. Two scheduling factors affect sleep loss during these operations: how long before the circadian wakeup signal crew members come off duty, and whether the layover lasts long enough to permit a second sleep episode in the early evening.
Document ID
20020034898
Acquisition Source
Ames Research Center
Document Type
Preprint (Draft being sent to journal)
Authors
Gander, Philippa H.
(San Jose State Univ. United States)
Gregory, Kevin B.
(Sterling Software, Inc. United States)
Rosekind, Mark R.
(NASA Ames Research Center Moffett Field, CA United States)
Shafto, Michael G.
Date Acquired
August 20, 2013
Publication Date
January 1, 1995
Subject Category
Aerospace Medicine
Funding Number(s)
PROJECT: RTOP 505-64-53
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available