NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Contributions of Planetary Science to Studies of Early Biosphere EvolutionThe history of impact cratering on the Moon, and extrapolations of crater chronologies to the inner planets, suggests that the late accretionary history of the Earth overlapped with other crucial events in the its history, including the origin of terrestrial life. This evidence, acquired from studies of other planetary bodies in the inner solar system, has profoundly affected how we view the early history of the Earth and evolution of the biosphere. Pre-biotic chemical evolution and the origin of life would have been delayed by the probable existence of a global magma ocean until -4.2 Ga. The early crust was largely destroyed by recycling, thus accounting for the sparse Archean record on Earth. Once life had developed, large impacts may have extinguished it several times before it finally gained a foothold. Potentially sterilizing impacts could have occurred as late as 3.7 Ga. At the very least, large impacts would have forced the biosphere through major environmental "bottlenecks" thereby canalizing its subsequent evolution. One legacy of these early events may be the structure of the present RNA-tree which indicates that extreme thermophiles are primitive within the Archaea, and may be the last common ancestors of life. By 3.5 Ga, marine sedimentary sequences contain unequivocal microbial fossils that attest to the presence of a terrestrial biosphere. The diversity of microbial forms present in these earliest fossil assemblages implies a preceding interval of evolution during which major evolutionary advances (e.g. photosynthesis) could have taken place. Evidence cited above places the origin of life within the interval 3.5 and 4.2 Ga, a period of 700 Ma. Thus, it appears that terrestrial life not only evolved rapidly, but perhaps more than once. This expands the possibilities that life may have also developed elsewhere. Of the other planets in our solar system, Mars holds the greatest chance of having developed life. But, the present surface of Mars is hostile to life. Liquid water, regarded as essential for living systems, is unstable on the surface of Mars due to the low atmospheric pressure. The results of the Viking Lander biology experiments established that organic molecules are not present in the regolith of Mars, forcing the exobiological community to consider new ways of exploring for Martian life. Older, heavily cratered terranes on Mars show geomorphic evidence for abundant water between 3.0- 4.0 Ga. It is quite possible that life developed on Mars during this time, as it did on the Earth. The present focus for Mars Exobiology lies in the search for a fossil record. Archean-aged crust, while mostly missing on Earth, appears to be widespread in ancient cratered highlands of Mars, and aqueous mineral deposits within such sequences may hold crucial fossil evidence for an early Martian biosphere.
Document ID
20020036228
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Farmer, Jack D.
(NASA Ames Research Center Moffett Field, CA United States)
Chang, Sherwood
Date Acquired
August 20, 2013
Publication Date
January 1, 1995
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
Paper-28039
Meeting Information
Meeting: Geological Society of America Meeting
Location: New Orleans, LA
Country: United States
Start Date: November 6, 1995
End Date: November 9, 1995
Sponsors: Geological Society of America
Funding Number(s)
PROJECT: RTOP 185-52-82
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available