NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Vertical Transport Processes for Inert and Scavenged Species: TRACE-A MeasurementsThe TRACE-A mission of the NASA DC-8 aircraft made a large-scale survey of the tropical and subtropical atmosphere in September and October of 1992. Both In-situ measurements of CO (G. Sachsen NASA Langley) and aerosol size (J. Browell group, NASA Langley) provide excellent data sets with which to constrain vertical transport by planetary boundary layer mixing and deep-cloud cumulus convection. Lidar profiles of aerosol-induced scattering and ozone (also by Bremen) are somewhat require more subtle interpretation as tracers, but the vertical information on layering largely compensates for these complexities. The reason this DC-8 dataset is so useful is that very large areas of biomass burning over Africa and South America provide surface sources of appropriate sizes with which to characterize vertical and horizontal motions; the major limitation of our source description is that biomass burning patterns move considerably every few days, and daily burning inventories are a matter of concurrent, intensive research. We use the Penn State / NCAR MM5 model in an assimilation mode on the synoptic and intercontinental scale, and assess the success it shows in vertical transport descriptions. We find that the general level of emissions suggested by the climatological approach (Will. Has, U. of Montana) appears to be approximately correct, possibly a bit low, for this October, 1992, time period. Vertical transport in planetary boundary layer mixing to 5.5 kin was observed and reproduced in our simulations. Furthermore we find evidence that Blackader "transilient" or matrix-transport scheme is needed, but may require some adaptation in our tracer model: CO seems to exhibit very high values at the top of the planetary boundary layer, a process that stretches the eddy-diffusion parameterization. We will report on progress in improving the deep convective transport of carbon monoxide: the Grail scheme as we used it at 100 kin resolution did not transport enough material to the upper troposphere. We expect to be able to attribute this to either parameterization reasons (inadequacy of this parameterization at the large 100km scale) or other reasons. Nevertheless, the qualitative nature of deep transport by clouds shows up well in the simulations. As for scavengable species, the simulations predict tens of micrograms per standard cubic meter of smoke aerosol in the boundary layer. In a straightforward illustration of our simple bulk-mass scavenging parameterization, to one or two micrograms per standard cubic meter of smoke aerosol in the free troposphere just above the source regions: very high concentrations for the free troposphere. We expect to report on comparisons of these predictions to a variety of observations.
Document ID
20020039705
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Chatfield, Robert B.
(NASA Ames Research Center Moffett Field, CA United States)
Chan, K. Roland
Date Acquired
August 20, 2013
Publication Date
January 1, 1997
Subject Category
Environment Pollution
Meeting Information
Meeting: 77th Annual Meeting of the American Meteorological Society
Location: Long Beach, CA
Country: United States
Start Date: February 2, 1997
End Date: February 7, 1997
Sponsors: American Meteorological Society
Funding Number(s)
PROJECT: RTOP 622-59-39-10
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available