NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Estimating Net Primary Productivity Using Satellite and Ancillary DataThe net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (A(sub g)) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of A(sub g), viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process-based approach has been taken to calculate A(sub g) and R using satellite and ancillary data. A(sub g) has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite observations. These maintenance respiration values were then adjusted to that corresponding to air temperature according to a prescribed non-linear variation of respiration with temperature. The growth respiration has been calculated from the difference of Ag and maintenance respiration, according to the two-compartment model. The results of calculations will be reported for 36 consecutive months (1987-1989) over large contiguous areas (ca. 10(exp 5) sq km) Of agricultural land and tropical humid evergreen forests, and compared with available field data.
Document ID
20020039793
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Choudhury, B. J.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Houser, Paul
Date Acquired
August 20, 2013
Publication Date
January 1, 2001
Subject Category
Environment Pollution
Meeting Information
Meeting: 53rd International Astronautical Congress Meeting
Country: United States
Start Date: October 10, 2002
End Date: October 19, 2002
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available