NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Machine Phase Fullerene Nanotechnology: 1996NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional information is contained within the original extended abstract.
Document ID
20020039864
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Globus, Al
(MRJ, Inc. Moffett Field, CA United States)
Chancellor, Marisa K.
Date Acquired
August 20, 2013
Publication Date
January 1, 1997
Subject Category
Geophysics
Meeting Information
Meeting: Electrochemical Society''s 191st Meeting
Location: Montreal, Quebec
Country: Canada
Start Date: May 4, 1997
End Date: May 9, 1997
Sponsors: Electrochemical Society, Inc.
Funding Number(s)
PROJECT: RTOP 519-40-12
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available