NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
ANSYS Modeling of Hydrostatic Stress EffectsClassical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.
Document ID
20020043292
Acquisition Source
Marshall Space Flight Center
Document Type
Other
Authors
Allen, Phillip A.
(Tennessee Technological Univ. Cookeville, TN United States)
Date Acquired
August 20, 2013
Publication Date
October 1, 1999
Publication Information
Publication: 1999 NASA/ASEE Summer Faculty Fellowship Program
Subject Category
Structural Mechanics
Funding Number(s)
CONTRACT_GRANT: NGT8-52874
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available