NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effect of High Temperature on the Tensile Behavior of CFRP and Cementitious CompositesConcrete and other composite manufacturing processes are continuing to evolve and become more and more suited for use in non-Earth settings such as the Moon and Mars. The fact that structures built in lunar environments would experience a range of effects from temperature extremes to bombardment by micrometeorites and that all the materials for concrete production exist on the Moon means that concrete appears to be the most feasible building material. it can provide adequate shelter from the harshness of the lunar environment and at the same time be a cost effective building material. With a return to the Moon planned by NASA to occur after the turn of the century, it will be necessary to include concrete manufacturing as one of the experiments to be conducted in one of the coming missions. Concrete's many possible uses and possibilities for manufacturing make it ideal for lunar construction. The objectives of this research are summarized as follows: i) study the possibility of concrete production on the Moon or other planets, ii) study the effect of high temperature on the tensile behavior of concrete, and iii) study the effect of high temperature on the tensile behavior of carbon fiber reinforced with inorganic polymer composites. Literature review indicates that production of concrete on the Moon or other planets is feasible using the indigenous materials. Results of this study has shown that both the tensile strength and static elastic modulus of concrete decreased with a rise in temperature from 200 to 500 C. The addition of silica fume to concrete showed higher resistance to high temperatures. Carbon fiber reinforced inorganic polymer (CFRIP) composites seemed to perform well up to 300 C. However, a significant reduction in strength was observed of about 40% at 400 C and up to 80% when the specimens were exposed to 700 C.
Document ID
20020043304
Acquisition Source
Headquarters
Document Type
Other
Authors
Toutanji, Houssam A.
(Alabama Univ. Huntsville, AL United States)
Date Acquired
August 20, 2013
Publication Date
October 1, 1999
Publication Information
Publication: 1999 NASA/ASEE Summer Faculty Fellowship Program
Subject Category
Composite Materials
Funding Number(s)
CONTRACT_GRANT: NGT8-52874
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available