NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Benthic Marine Cyanobacterial Mat Ecosystems: Biogeochemistry and BiomarkersCyanobacterial mats are complete ecosystems that can include processes of primary production, diagenesis and lithification. Light sustains oxygenic photosynthesis, which in turn provides energy, organic matter and oxygen to the community. Due to both absorption and scattering phenomena, incident light is transformed with depth in the mat, both in intensity and spectral composition. Mobile photo synthesizers optimize their position with respect to this light gradient. When photosynthesis ceases at night, the upper layers of the mat become reduced and sulfidic. Counteracting gradients of oxygen and sulfide combine to provide daily-contrasting environments separated on a scale of a few mm. The functional complexity of mats, coupled with the highly proximal and ordered spatial arrangement of biota, offers the potential for a staggering number of interactions. At a minimum, the products of each functional group of microorganisms affect the other groups both positively and negatively. For example, cyanobacteria generate organic matter (potential substrates) but also oxygen (a toxin for many anaerobes). Anaerobic activity recycles nutrients to the photosynthesizers but also generates potentially toxic sulfide. The combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods, and to various depths in the mat. Observations of mats have produced numerous surprises. For example, obligately anaerobic processes can occur in the presence of abundant oxygen, highly reduced gases are produced in the presence of abundant sulfate, meiofauna thrive at high sulfide concentrations, and the mats' constituent populations respond to environmental changes in complex ways. While photosynthetic bacteria dominate the biomass and productivity of the mat, nonphotosynthetic, anaerobic processes constitute the ultimate biological filter on the ecosystem's emergent biosignatures, including those sedimentary textures, organic compounds, and minerals that enter the fossil record. The ability of cyanobacterial mats to channel abundant solar energy into the creation and maintenance of complex structures and processes has created a multitude of consequences, both for sedimentation and for the early evolution of our biosphere.
Document ID
20020050667
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
DesMarais, David J.
(NASA Ames Research Center Moffett Field, CA United States)
DeVincenzi, Donald
Date Acquired
August 20, 2013
Publication Date
January 1, 2001
Subject Category
Life Sciences (General)
Meeting Information
Meeting: Geological Society of America Annual Meeting
Location: Boston, MA
Country: United States
Start Date: November 8, 2001
Sponsors: Geological Society of America
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available