NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea BreezeA technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
Document ID
20020052190
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Lapenta, William M.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Blackwell, Keith
(University of South Alabama Mobile, AL United States)
Suggs, Ron
(NASA Marshall Space Flight Center Huntsville, AL United States)
McNider, Richard T.
(Alabama Univ. Huntsville, AL United States)
Jedlovec, Gary
(NASA Marshall Space Flight Center Huntsville, AL United States)
Kimball, Sytske
(University of South Alabama Mobile, AL United States)
Arnold, James E.
Date Acquired
August 20, 2013
Publication Date
January 1, 2002
Subject Category
Meteorology And Climatology
Meeting Information
Meeting: Symposium on Observations, Data Assimilation, and Probabilistic Prediction
Location: Orlando, FL
Country: United States
Start Date: January 13, 2002
End Date: January 17, 2002
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available