NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Steps Towards the Integration of Conflict Resolution with Metering and SchedulingNASA Ames Research Center is developing decision support tool technology for air traffic controllers to improve the efficiency and capacity of National Airspace System. The goal is to provide technology, tools and procedures that result in the highest possible level of user preferred trajectories whenever possible with safe and efficient traffic management when necessary. The work is being conducted under the NASA Advanced Air Transportation Technology Program in cooperation with the FAA through the Inter-Agency Integrated Product Team. The objective is to develop technology and procedures that lead towards a seamless integration of conflict resolution with metering and scheduling for arrival aircraft and en route aircraft that are under metering restrictions. A requirement is that the integration incorporate user preferred trajectories. The ultimate goal is the implementation and validation of the Descent Advisor (DA) concept which provides clearance advisories to a sector controller that simultaneously meet metering constraints, are conflict free, incorporate a user preferred (e.g., minimum fuel) descent profile, and generally require no further corrective clearance as the aircraft transitions from en route cruise into the TRACON. The DA concept may also be applied to en route aircraft under metering constraints, e.g., miles-in-trail. To achieve the DA concept a stepwise development and field evaluation is anticipated. This paper addresses the initial steps towards implementation of the DA. The Traffic Management Advisor (TMA) computes arrival time sequence and required delay information for display to the sector controller during periods when arrivals must be metered due to landing rate restrictions at the airport. The Initial Conflict Probe (ICP) compares trajectory predictions for all aircraft and alerts the controller when any two aircraft are predicted to violate separation standards (5 mi. and 2000 ft. in en route airspace). ICP also includes a trial planning function allowing the controller to develop and check a separate "what if" trajectory for conflict resolution. TMA and ICP currently operate independent of one another and have separate controller displays. The TMA meter list is on the radar controller's plan view display. The ICP is still under development, but the current concept calls for a list of predicted conflicts at the data controller position. The research described herein address two steps towards the implementation of DA. The first is to develop a concept for integrated display of conflict and metering information on a controller's display. The objective is to provide the controller with situational awareness of one problem while he develops a solution to the other. The next step is to expand the concept for display of automated clearance advisories for one problem (e.g., metering) which take into account the other problems (e.g., conflicts). Information to be communicated between TMA and ICP to facilitate' manual or automated advisories is being identified as the concept matures. In order to study the ICP/TMA integration concept the CTAS conflict probe capability has been adapted to Ft. Worth Center. The system is being validated in the laboratory with all-track data and for non -interference with TMA, TMA is already running as a daily use prototype at Ft. Worth Center. A laboratory prototype system has been developed under the CTAS baseline which combines conflict and metering information on a common user interface. Elements of the user interface are shown in Figure 1. In this simple illustration the user sees the simultaneous effect of a trial plan on meter fix delay and conflict status. Delay information is shown in the aircraft flight data block, the meter list, and the TMA timeline. Experience during Descent Advisor development and observations at Ft. Worth Center high and low attitude arrival sectors during metering suggests that manual trial planning will be unworkable during rush periods due to high controller workload.
Document ID
20020061256
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
McNally, B. David
(NASA Ames Research Center Moffett Field, CA United States)
Edwards, Thomas
Date Acquired
August 20, 2013
Publication Date
January 1, 1998
Subject Category
Aircraft Communications And Navigation
Meeting Information
Meeting: 2nd International Air Traffic Management R and D Seminar (ATM-98)
Location: Orlando, FL
Country: United States
Start Date: December 1, 1998
End Date: December 4, 1998
Funding Number(s)
PROJECT: RTOP 538-04-25
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available