NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Observations of Subvisible Cirrus Clouds and Gravity Waves at the Tropical TropopauseThin, subvisible cirrus (SVC) clouds at the tropical tropopause have been observed by a number of methods in a variety of observational programs, including in situ sampling and aircraft and space-based lidar. Modeling studies suggest that these clouds play an important role in dehydrating tropospheric air as it enters the stratosphere. This is because particles large enough to have significant fall speeds can form under the conditions of slow cooling that are implied by the large horizontal extent of the SVC sheets. The IR radiation that these clouds absorb, and the upward vertical motion this implies, also makes them candidates for a tropical troposphere-to-stratosphere mass transfer mechanism. They may also play a role in the earth's radiation budget. These sheets were observed on five flights during the Tropical Ozone Transport Experiment (TOTE) by the NASA Langley DIAL lidar aboard NASA's DC-8 research aircraft operating during December 1995 and February 1996 south of Hawaii. The relationship of the SVC's observed during TOTE to convection was not a simple one. One class of SVC's are within 1000 km of the persistent strong convection near 15S (the SPCZ). Trajectory analyses indicated that the SVC air masses have in fact passed through the SPCZ within a few days of observation. These clouds are very close to the tropopause, with maximum potential temperatures not much higher than 370K, consistent with in situ water and total water measurements near the tropopause made during the Stratosphere Troposphere Exchange Project in January 1987 at Darwin, Australia. A second class of SVC's are not immediately downstream of convection. These clouds tend to be higher, reaching potential temperatures of 390K or more. Trajectory analyses indicate that the air in these SVC's originates either in the equatorial western Pacific or along the subtropical jet. In any case, the warm temperatures the SVC air masses encounter just prior to the observation time along the back trajectory imply that the clouds cannot be residual particles from cirrus blowoff, but must form locally as the air move upward and equatorward south of Hawaii. Since all the parcels have encountered colder temperatures than those at the time of observation early in their history, subsynoptic scale temperatures colder than the analysis temperatures appear to be required to explain the formation of ice particles. In fact, the sloping shapes of the SVC's do suggest that they are gravity or inertia-gravity waves. In situ meteorological measurements made by the ER-2 within a day of the DC-8 remote lidar observations show a gravity wave structure near the equator with an estimated period of about 30 hours. This is sufficiently long to allow large particles to form and fall out (thus allowing dehydration). Other ER-2 flights south of Hawaii at other times of year show gravity and inertia-gravity waves with a poleward wavenumber component and significant (5 degrees peak to peak) temperature perturbation.
Document ID
20020064468
Acquisition Source
Ames Research Center
Document Type
Other
Authors
Pfister, Leonhard
(NASA Ames Research Center Moffett Field, CA United States)
Browell, E. V.
(NASA Langley Research Center Hampton, VA United States)
Hipskind, R. Stephen
Date Acquired
August 20, 2013
Publication Date
January 1, 1998
Subject Category
Geophysics
Funding Number(s)
PROJECT: RTOP 538-08-19
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available