NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Process Cost Modeling for Multi-Disciplinary Design OptimizationFor early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This report outlines the development of a process-based cost model in which the physical elements of the vehicle are costed according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this report is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool. In successive sections, the report addresses the issues of cost modeling as follows. First, an introduction is presented to provide the background for the research work. Next, a quick review of cost estimation techniques is made with the intention to highlight their inappropriateness for what is really needed at the conceptual phase of the design process. The First-Order Process Velocity Cost Model (FOPV) is discussed at length in the next section. This is followed by an application of the FOPV cost model to a generic wing. For designs that have no precedence as far as acquisition costs are concerned, cost data derived from the FOPV cost model may not be accurate enough because of new requirements for shape complexity, material, equipment and precision/tolerance. The concept of Cost Modulus is introduced at this point to compensate for these new burdens on the basic processes. This is treated in section 5. The cost of a design must be conveniently linked to its CAD representation. The interfacing of CAD models and spreadsheets containing the cost equations is the subject of the next section, section 6. The last section of the report is a summary of the progress made so far, and the anticipated research work to be achieved in the future.
Document ID
20020065232
Acquisition Source
Langley Research Center
Document Type
Other
Authors
Bao, Han P.
(Old Dominion Univ. Norfolk, VA United States)
Freeman, William
Date Acquired
September 7, 2013
Publication Date
June 30, 2002
Subject Category
Mechanical Engineering
Funding Number(s)
PROJECT: ODURF Proj. 192991
CONTRACT_GRANT: NAG1-2195
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available