NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nature of Fluctuations on Directional Discontinuities Inside a Solar Ejection: Wind and IMP 8 ObservationsA solar ejection passed the Wind spacecraft between December 23 and 26, 1996. On closer examination, we find a sequence of ejecta material, as identified by abnormally low proton temperatures, separated by plasmas with typical solar wind temperatures at 1 AU. Large and abrupt changes in field and plasma properties occurred near the separation boundaries of these regions. At the one boundary we examine here, a series of directional discontinuities was observed. We argue that Alfvenic fluctuations in the immediate vicinity of these discontinuities distort minimum variance normals, introducing uncertainty into the identification of the discontinuities as either rotational or tangential. Carrying out a series of tests on plasma and field data including minimum variance, velocity and magnetic field correlations, and jump conditions, we conclude that the discontinuities are tangential. Furthermore, we find waves superposed on these tangential discontinuities (TDs). The presence of discontinuities allows the existence of both surface waves and ducted body waves. Both probably form in the solar atmosphere where many transverse nonuniformities exist and where theoretically they have been expected. We add to prior speculation that waves on discontinuities may in fact be a common occurrence. In the solar wind, these waves can attain large amplitudes and low frequencies. We argue that such waves can generate dynamical changes at TDs through advection or forced reconnection. The dynamics might so extensively alter the internal structure that the discontinuity would no longer be identified as tangential. Such processes could help explain why the occurrence frequency of TDs observed throughout the solar wind falls off with increasing heliocentric distance. The presence of waves may also alter the nature of the interactions of TDs with the Earth's bow shock in so-called hot flow anomalies.
Document ID
20020084967
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Vasquez, Bernard J.
(New Hampshire Univ. Durham, NH United States)
Farrugia, Charles J.
(New Hampshire Univ. Durham, NH United States)
Markovskii, Sergei A.
(New Hampshire Univ. Durham, NH United States)
Hollweg, Joseph V.
(New Hampshire Univ. Durham, NH United States)
Richardson, Ian G.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Ogilvie, Keith W.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Lepping, Ronald P.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Lin, Robert P.
(California Univ. Berkeley, CA United States)
Larson, Davin
(California Univ. Berkeley, CA United States)
White, Nicholas E.
Date Acquired
August 20, 2013
Publication Date
December 1, 2001
Publication Information
Publication: Journal of Geophysical Research
Publisher: American Geophysical Union
Volume: 106
Issue: A12
ISSN: 0148-0027
Subject Category
Social And Information Sciences (General)
Report/Patent Number
Paper-2001JA000142
Funding Number(s)
CONTRACT_GRANT: NAG5-2834
CONTRACT_GRANT: NAG5-1479
CONTRACT_GRANT: NAG5-10883
CONTRACT_GRANT: NCC5-609
CONTRACT_GRANT: NAG5-8228
CONTRACT_GRANT: NSF ATM-96-22057
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available