NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Surface Processes of Faceted GrowthAtomic force microscopy and high precision optical interferometry allow to analyze the processes that are in the core of our present understanding of faceted crystal growth. Some of these processes will be reviewed. Recent experiments suggest that the Gibbs-Thomson Law (GTL) may not be applicable to the weakly fluctuating strongly polygonized steps, with low kink density. Propagation rate of a straight short step segment changes with the segment length much steeper than predicted by GTL. If the step fluctuations are still well developed, the typical transition length may be determined just by the radius of rounded comers of the polygonized step. If fluctuations do not have enough time to develop, the kinetic effects may be essential. Indeed, 'communications' between comers of a short straight step segment may occur and, thus, the GTL may be implemented only via kink exchange. E.g., dissolutions of this short segment at macroscopic equilibrium occurs as follows: The kinks are split from one comer as a result of fluctuations, and annihilate with kinks of the opposite sign generated by another comer. Similarly, an exchange via chain of kinks on a rough step is the mechanism to implement the GT Law. If there is a supersaturation with respect to a large crystal, the kinks not only diffuse along the step, but move back the generating comers. This 'wind' prevents communication between the comers and places upper limit supersaturation only below which GTL is applicable. Steps replace kinks in the 3D case, though, of course, another dimensionality brings about another physics. Another specific problem to think about is if fluctuations are always fast enough to provide enough kinks for linear dependence of step rate on supersaturation. Increasing azimuthal polygonization of growth hillocks is a sign of insufficient fluctuation rate. Morphological stability of vicinal faces is usually considered on the basis of mutually parallel steps. Azimuthal anisotropy and interlacing of step bunches inducing the well known bunch splitting is another challenge. Among other challenging problems are: existence of surface diffusion on the crystal/so1ution interface, step interaction in solutions, achievement of step flow modes from liquids, impurity effects. New phenomena essential in biomacromolecular crystallization is another interesting area.
Document ID
20030000435
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Chernov, A.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Curreri, Peter A.
Date Acquired
August 21, 2013
Publication Date
January 1, 2002
Subject Category
Solid-State Physics
Meeting Information
Meeting: 14th American Conference on Crystal Growth and Epitaxy
Location: Seattle, WA
Country: United States
Start Date: August 5, 2002
End Date: August 9, 2002
Funding Number(s)
CONTRACT_GRANT: NCC8-66
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available